6.1 The velocity in a certain two-dimen-
sional flow field is given by the equation

V = 2xti — 2y1j

where the velocity is in ft/s when x, y, and ¢ are
in feet and seconds, respectively. Determine
expressions for the local and convective compo+
nents of acceleration in the x and y directions.

What is the magnitude and direction of the ve-
locity and the acceleration at the point x = y =

2 ft at the time ¢t = 07

F rorn express /on

for

veloci+y Py
Since

du
7 -gz-t-a.

+ v
X

o
J o

%ﬁfn
X

i

2

mer——
—_—

4, (local) =

and

]

iy "

At x=q=2ft and
w= 20)(c)=0

—

7hat V =0

&xz

Gy = 24+ 4yt " T

So

and 2X + 4xt* =

771u5)

A

Z= Y4 —4] £tfst

ek

= 2x%

gnd U= —2__17[',

Gxt)(o) + (- 292)(-2¢)

2(2)+ 4G)()
—2(2) + ¥12)(o)

with | 2=

-2(z)(0) =0

4 £/
4 s

n

Veay b= 546 £fs*
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6.2 Repeat Problem 6.1 if the flow field is described by the
equation |

V= (322 + i - 6xyj

where the velocity is in fi/s when x and y are in feet.

' 2 = —bxy,
Fl’bm expréssion AV /e/oe;;-l-yj WU =3x +1 and v fj

Since

+hen

a i
and 73 (CO/)V);' u é_é‘ + 7/_3_& :(5)(2_'_1)ﬂx) "‘(éxﬁ)ﬂ’)

9
= X (3x%1) = [9x%+ bx

o QU oV
Gy = ;2 T 4527 775
and Sv

2t
ay (o) = w2+ 72V o (35%1) (b)) + (b))

IR 2y
= |§x°%y —by

At x=y=1ft anda t=o

M=5(1)2'+/ = 4 V:_,g,(,)(,):_é

So That
— A

and .
Q= bx (3x%41) = a(l)[3('>z+:_] = 24 +t/s

G, = 18X%Y =4y =180 = b0) = 12 BEs*
Thus,

Lo 1Th

7 = 2'+/£\ +;23‘\ It /s
[z = Vaw? +02)> = 268 ft/s*

b2

- .—/.\_ﬁ_b A: 2 7._._.!7“1)“
V--’7‘L 6 “z anA[V( -i-([,) 12 A.




63  The velocity ina cenai;l flow field is given by the equa-
tion |
V=x + x2%j + yzk

Determine the expressions for the three rectangular components
of acceleration.

F/‘om expresszbn ér ue/az/{g) u= X U= ;(22
Since
. ou Ju Ju Ju
1hen |
a,= o+ [ x J1)+ (£2)( 0 ) +(z)(c)
= X
S/;m./ar/g) -
= oY iy v oV
a, at*“m*”ag"“";—;
and \ 2
dy= o + ( x )oxg)+r (2o) + (42) ()
- z2x*2 4+ X YyZ
Also,
| = ow W, e PW e QWS
fi ARy I T
So Th
‘ a,= o+ (X o)+ (x2)@) +(8)(s)
= x22*+ 4 E
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6.4 The three components

flow field are given by
u=x*+y*+2?
v=xy+yz+ 2z
w= —3xz — z%/2

of velocity in a

+ 4

(a) Determine the volumetric dilatation rate, and
interpret the results. (b) Determine an expression -
for the rotation vector. Is this an irrotational flow

field?

(&)

Thus, for velocity

Volumetric dilatabion rate = 24 + (X+2) + (-3x-2) =0

Volume#ric af//d/aj/a'é vate =

ou . Jr . W
22+ 3yt 52 (65 &7)

tomponents g1/en

Ran———

This resuld indicates That There is no chame 1n  The
Volume of a Fluid element a5 i/t moves Ffrom one
J0Cation to anethen.

(b) r
From Ez’s, 6.12,6./3

ond 6./% w)Th The Velocrty Compomnts

qiven :
[ IV A4 ) _
W, =2 (ax 34,)*3(.’1*2.‘1)== --3—
g pow_ Yy L oo (yezz)] = — (2
W, =3 /23 3_2)- 3 [o (yfzz-)J = (1»4-2)
W o= L (es W) L . 2Z
i 2 (327_- X )“ ;[ZZ" ﬁ'-a?)J" 2
Thas
J —_— A A A
e (80e) 0+ 227 - 2
’ — . , »
Since T 1s hot dero everywhere The flow field

/s not irrotations]. Mo,

———




6.5

£6.5
. field described by
: V=-xi+

Is the flow irrotational?

Determine an expressic‘)n‘ for the vorticity of the flow

4%

¥yl

§=2w (Eg 6.17)
F-'r‘am e)cpresy.bn —ér ;ue/ﬂc/?’y ) U= — xj,BJ U= 3%/ ard - = g}
and with
- | oW v
L, T 2 (7; 5—;) (Eg. 6.13)
Lo/ or Jur
Lusr 9”’/3£~_5;<-) (Eg. 6.1y
- 4 [T su
w3 (% %) (Eg. L)
it follows That
p
w)(— (] ) ‘Uyzo ) and wi: :{:‘ [0—[‘)’){39}:%)‘5
Thas, |
—_ ( A A - )
T= 2 (W0t raw, k)
A A " 2. AJ
= 2 [(o):. + (o)JA +(f_><£1)/2.
= 3szz£.
Since $ is  not 7ero  everywhere The Flow
/s ho? Irrotationsl. Mo,

-5




6.6

6.6

the velocity field
u = ay + by?
v=w=20

where a and b are constants. Is

A one-dimensional flow is described by

the flow irrota-

tional? For what combination of constants (if any)
will the rate of angular deformation as given by

Eq. 6.18 be zero?

F;’r It;ra’fa;zé/’w’l‘én/ «rvﬁ/mu)f

distribution 7/1/@/4 ;

- A [ew
.=z (75
AL
wj“z(ét
[ IV™ _
w;g'“,z(ax

— .
Thu.s/ Lo /S
IS not

not

Since (from E3. 6.18

» ouU
AR A
1t A//ow.f vér The ve
¥z a+z

Thus) There are no
egual Fo 7ero ) That
of Y. MNene.

—

wero everywhere
inrotational, No.

w <o

oV N\
d&)—o
- oWy _
5% ) =0
o U

5): - (1@' +£’5)

N\

and  The  Flowr

)

)L
iy
Jocrty distributlion gi10en That
by

values of a and b exeept  bolh
will  give § =0

, and for Tne velocity

for all values




6.7

6.7 For a certain incompressible, two-dimensional flow
field the velocity component in the y direction is given by the

equation
v=73xy—x%

Determine the velocity component in the x direction so that the

continuity equation is satisfied.

To satishy The continuity egueton,

Ju QU

Jx T a5 ~° €
Since
_a_g— = 3)(_)(2'
2Y
Then #rem Eg.(1)
ou _ L2 €2y
5% 3X + A

.

E gaziz'pa (2) can be integated with respect to x Ao obtaiy

fd“ = _ﬁxdx +fXLt/x+f-(9)

or

3 =2 x3
u="ZX"+3 +Hy)

where  Fcy) is an  ur

determined functlioy of g.
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6.8 An incompressible viscous fluid is placed
between two large parallel plates as shown in Fig.
P6.8. The bottom plate is fixed and the upper
plate moves with a constant velocity, U. For these
conditions the velocity distribution between the
plates is linear, and can be expressed as

72
u—Ub

Determine: (a) the volumetric dilatation rate, (b)
the rotation vector, (c¢) the vorticity, and (d) the
rate of angular deformation.

(a) Volumetric dilatation rate = %)E( + é_;'+ 3_%" __._.,-—0:_

(b) FPr z/e/ocz’%'; distribution grven

Zd_\: a)_z‘é
and A S du_ . U
Wy 2 ax-éf'g)' 24
Thus) . .
_ U
%) = &
CC) _—;z Xy = —-—U.-‘-'\
£ = 20 7 *
® 20..
W) ¥ g (£5. 4.8
Thus,
Y= U
b

6-8
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6.9

A viscous fluid is contained in the space between con-

centric cylinders. The inner wall is fixed, and the outer wall ro-
tates with an angular velocity . (See Fig. P6.9a and Video
V6.1.) Assume that the velocity distribution in the gap is linear
as illustrated in Fig. P6.9b. For the small rectangular element
shown in Fig. P6.9b, determine the rate of change of the right
angle y due to the fluid motion. Express your answer in terms
of ry, r;, and .

Evom EZ. 6. 18

e av"
Yy o3x*

QLo
\®
s

Foy  The Jinear oistri bution

u=- L@
L=t
So  That
u . . hw
24 -V,
anA  Sinte V=0
y- - ne
b —H

g

7%8 }’)Ejaﬁ' ve stén

(a) .
m FIGURE P69

indicates That The _0//:7//54/

ri jﬁf’ Angle 15 increasing .

(b)

o
1
<Q
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6.10  For a certain incompressible flow field it
is suggested that the velocity components are given
by the equations

u = 2xy = —xly w=10
Is this a physically possible flow field? Explain.

Any  physically  possible /kcom/oress/'é/e, Flow Freld
must satisty conseration Of mess es expressed by

The velatwnsh: )o

du  JV . dw
2x T a9 T 7z =°

Fér‘ /776. Ve/acify C/l.s ‘/r/‘éwt“f/ba 7I.U€H

al;( = 2 90'.._. 2
2X J a-; x

Substitubon 1hte EZ. (1) Shows

=

2y -x*+o0 # o

Thus, This is not a physically possitle Fhu freld Mo,

)

dwr-

— =
2

Thet

cl)

b-lo
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6.11 The velocity components of an incompressible, two-
dimensional velocity field are given by the equations

u=y = x(1+x)
v=y2x+1)
Show that the flow is irrotational and satisfies conservation of

mass.

L Fhe two ~cimenspnal Lhw is
| D, = L oY

2 2 { ox

5 +he velocity dis

90-'
ox

Thus, 1
Wz = I (23 )

=zy

dAnd

To satis *[7 conséy V4

aAnd
Co serl/a.f/or

the Fow 5 1)

lrrofa;l:/o;ml 5
- 9_.“') =0

29
Fri bution G1ven ,
oun
— = 2
5y T %Y

Zj) o

’(‘0 fft-i‘/p/;@g .

tion of mas s,

u -
i
Since,
2U™ .
%_)%‘..—-F'zx 55 = 2t
Then
— 1= 2X +2x +1 =o

of mass 15 satisfieq

——

—
—




6. 12

) g=-uPy

() EF’ar W= _zxzﬁ 4

@) By =Xy,

6.12  For each of the following stream functions, with units
of m¥s, determine the magnitude and the angle the velocity
vector makes with the x-axis at x = 1 m, y = 2 m. Locate any
stagnation points in the flow field.

@ ¢¥=x

Fl"ém; Tne 437[ niton o/ e Jfreﬂm /-‘an‘wn )
% oY

w= o 2% (£gs.¢.37)

7y | X

, 4
S

,’,%__‘j_o

-.a(P - '/m

4Ty TS ‘ 1a | |
At x=lm gy =2m it 74//0405 7‘)1“{ u~l’—§-" and V=Y

2

S

ban b= +  o=T00°

Since U # 0, There are no Jéajﬂu 1on po/m‘:s

2n A 7/-—-0 a:f‘ fj*o a g%ngnéa’hoqh:

M

*"'l

L 6/2




6.13

6.13 The stream function for an incompres-
sible, two-dimensional flow field is '

y = ay — by’

where a and b are constants. Is this an irrotational

flow? Explain.

For The How 1o be J rrotationa) )
- 9v- _du
wz‘ 2%  Jy
ond Sor e stream tanckon civen,
. o¥ _ - 3by*
w= ¢f a Y
> - 3_{_/ = 0
Thus,
U - _ b Qv
39 3 *32 -0
Jo 77141‘
/ g -
wz:z[o— (--ébg)]- 317{1

Since G, # 0 Hlow
b=o)

(Hﬂ less

Ao

is not /r‘ra Za dione/ '

(Eg.biz)

b-/3
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6.14
dimensional flow field is

¥ = ay* —

The stream function for

an incompressible, two- |

bx

where a and b are constants. Is this an irrotational flow? Explain.

For The Hlow 4o be rpotationa) (see EZ.LIZ))
a?z = _‘_2/_ %—g—g =
and for the stream tancton C,l&cw,
L= é.(.l' = 2aj
2y
s - ?.l.)’: = b
Thus,
So  Thut |
&)5521/‘[0“ (Zé—)]""ﬂ-
Sinee W, #0 Flow is not irrodations)

Cunless a o) ,

Mo

b-14




6. /5
6.15  The velocity components for an incom-
~ pressible, plane flow are
v, = Ar~' + Br~?cos/0
vy, = Br2sin k
where A and B are constants. Determine the cor-
responding stream function.
From the detinibion of the stream Funckion,
. 1L d¥ - _ oY
YETF e Yo T~ o (£g.092)
So That For The velocity distributicy given,
( J¥ =/ -2
— = + + )
T b Ar B8 Cos B
-2 .
¢ - - BF s €2)
or
Inteqmte Eg. (1) wi Ty respect to 6 to obtain
ﬂ% = f(A + /:3/—"'.:@5@):/9 + {(N
or /
= A6 + BF sing + P €3)

5//%//#{9/ Inteqrate Eg.z
[
or
#

—
-

PBF Sine + 1[2)_/9)

) w'/#i r'€5fc’ci +o F fo aéz.(a/;,

¢ = _ﬂal—_:z.s/n& dr + £ (8)
/

(#)

T/w.s) #o $¢z§/.§7[5 bo#y 1':"3.5, (3) gnd (¥#)

W= A 6 +

Lo

e

N

vy lsimme + C

wWhere C s an

arbitrary constant.

6-15




6./16
6.16 For a certain two-dimensional flow field
u=290
v = 174

(a) What are the corresponding radial and tan-
gential velocity components? (b) Determine the
corresponding stream function expressed in
Cartesian coordinates and in cylindrical polar co-
ordinates. |

Y
cay At an arbitrary pont P
( see Figure)
V5= V 5in 8
7
, , P
V=V tsse
(b) Since
e e 0
U= -}—g o) a)(—l/
't follows That Y 15 not a function of y  anct
==V +C

wheve C 15 an  arbitmary tonstont

4/.5(9, witn X= Fltos O

==V resso +C

6-16
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6.17

cylindrical coordinates (Eq. 6.33 in text).

Make use of the control volume shown
in Fig. P6.17 to derive the continuity equation i

i}

x

Volume element
has thickness d z

FIGURE P6.17

;_i_/-/o d* +//:07'/;; a4 =0 (£g.6.19)
cv cs
For The differential eontrol volume shown
2 [ pd¥ = 2C vdo ar o7
cr Iz
and
PV-iadA = netl rate of mass outflow +hrough
Cs Surtaces of control velume

Frem /)ﬁﬂz at right .

/Ve-é ra.éc oﬁ MAass

outflow b= divection =

(0%+2LF & or %)dods
— (P4 - 25 ) %)dose

= JP%

ar

/n

P
2

Fdrdedz +/ou; drded#

(/OV;{- 0 PUs %w)(f*%r)JQJZ

or

(2)

(cont )

(1

&~17

| o
®




6.1l7

ﬁon"%)

From figure at right:

Net vate of mass
Outflow 10 &-direckoy —

6”1/5 *49:5 %"9) drdz

ﬁé’ 'é"ae Lf)drdi‘
2 Ve
—55 dy dédz

From 4‘7'10’6 at  pight :

Net vate of mass
Outtlow 17 E- divection =

2% dz
(pYi+ 23 92 ) 1 dp oy

— (1% - %-é’?‘/z‘)rdpw

N

= Pz

54‘45//'/;4/15” a/ EZS (1) Thru (%) in# E'Z 619 9/'6/#

%é Fdrdedz + %ad’f/: F adr

-+ drdedz
06
or
&, 0%, pu
/ot r 2
Since QLY . PYF /
or v Tk

E‘g.lﬁ‘) Can be writen 4as

. L 2r%
X

dedz  + LY drdfaz
+ a_a/;? rdrdedz =O

dPVE

76 T SE ~°

Which s

4

W

6-/8




6%

6.18 A two-dimensional, incompressible flow is given by
u = —yand v = x. Show that the streamline passing through
the pointx = 10 and y = Qs a circle centered at the origin.

For 7LW0~¢//’7'360$/0:94/ :F/ow a/onj a $+ream/ln'e

dy _ v
dx -
So That Hor +he Velocty eomponents 9iven
dy - X
dx —Y
and »
, ,_.fg dy = dex
Thus i '
7. sz;-_ _5_,'2-;.6 (wl’)erc C i5 a C&nS')un’[‘)
N 2
a”ﬂ( |
X*+y*=z2¢c =¢ ‘)

EXLL:U&An (1) Ve presents The efuaué/on dor The
-Aqm,'/j of streamlines. For a given value
oFf C' the 65144/'1{“70!».‘31;/6.5 a Civcle centered
at The ar/'gjn wiTh C'ﬂ‘he .S?uarc of the
yadius.

For X=10 qnd Y=o
2 }
/0 +0 =C = oo

Gnd The €4uation ok The streamline passin s
Through This pornt is

X%+9%= 00
lWhich 15 a Civele mc' vacliius /0 C?/?'}'?l’Pp( a“lL ﬂtejlﬂj/é_

619
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6.19  Inacertainsteady, two-dimensional flow
field the fluid density varies linearly with respect
to the coordinate x; that is, p = Ax where A is
a constant. If the x component of velocity u is

given by the equation u y
expression for v.

For

a variable

2 X 2

W)

/ /ou_-_- Qx)(j) =
1 follows That

0 (ou) _

i

Thus,

In-/€7/4/e EZ A1) with
fa’(/ou“}

-
—

or

, determine an

dens ity Flow y

2pw) 2 lpw)

L4

(Eg, 6.29)

Axy

2
J €1,

rzyecz‘ to y to obtass
—-f/}jdg + £ (x)

4y % '
=4+ 7[,01)

L (<)
A X

J(22%) -

+ F(x)

P =

With /0=/4x
//
Vo= 7 LAk

or

. 4*
v =z

Where — fix)

. ] .
s an arbi 7‘/‘4@ Lenction 07[ X,




6. 20

6.20  Inatwo-dimensional, incompressible flows
field, the x component of velocity is given by the
equation u = 2x. (a) Determine the correspond-
ing equation for the y component of velocity if
v = 0 along the x axis. (b) For this flow field
“what is the magnitude of the average velocity of
the fluid crossing the surface OA of Fig. P6.207
Assume that the velocities are in ft/s when x and
y are in feet.

(a) 7o 54//'5/7 e amé//;u'n‘jy EZuaéza}/

U oV _

y ft

1.0

,Q'

___.5 .
'}\QW 3 "

“1.0  x ft
FIGURE P6.20

( Consider &
unt thickness = /ft)

"271?‘ Jﬁ —0

dmee  Ju
A
1t follows 7hat

QU _

2—; =-2 ¢’/
Lntesration of Eg.00) wilh respect to 4 yields

/y V= -2y + Fix)
I’f =0 4/0n7 X~4xi$ (7:9) Thén -ﬂ(;() :?0 So That

-—Zﬂ

————

(5) 7, 5&//.3;47 onservation of mass

Gop :@4/’3-
Hlong AB  w=a() =
Cop = «hpg -

G

(2 #4001 L)) = 2 £27

[-’fc A}qnﬂ )

Ien
Z 5 That

& o5 So

s
4'/0/’17 B v =0 So 7That @0,5:0-
T hus £43
)
@,4 = @»3 = Z =
_)C{,B
Qﬁd V = @A - 2 ? - /' #/ ?Eé
Ay arer Vz 2
oA
-2




6.2/

6.21 The radial velocity component in an incompressible,

two-dimensional flow field (v, = 0) i

S

v, = 2r + 3r¥sin 6

Determine the corresponding tangen

vg, required to satisfy conservation of

2Up . _ ot
26 o

and with

F s 2KR 4 ar

11 follows That

20 - 4r 7‘

or
7%&/5/ EZ /) éeco/}ae.s
o Uz
~ e
56 ° - (4

Egumé/kmf?) Con be I1nte

o - - [

or

tial velocity component,
mass.

L 2z -0 /.4‘7_4.357
2%
Vi)
c’)
sm @
2,
qr sin &
+ 9 isin 8) Cz)

grated  wiTh re.s/p.?cf to & 4o obtu

(b + 9% sine)do + F(r)

e = = Hre — 9F0s0 + L)
9 = - o " o

U/Iere 7[(#-/ 5 an un

cle é(/“/n//‘ipf/ ;q/nc éleo.y 0[ r.

-2z
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6.22  The stream function for an incompres- - yom
sible flow field is given by the equation
y =3xy -y’ 1048

where the stream function has the units of m?/s
with x and y in meters. (a) Sketch the stream-
line(s) passing through the origin. (b) Determine
the rate of flow across the straight path A B shown
-in Fig. P6.27. A

1.0 ‘x,, m
FIGURE P6.22

(@) Lines of eonstant ¢ are sitreqm/ines,
- for W = 3/(2}-'73 The  streamline
/Oa.ss/nf 77lma7A The ori41n (x =0, y=o)
has a value Y=o Thus, 7he

egua tion for The Steamibines Through
The origin is
2 3
O=3x%-Y
oF

y= 5 x

A sketch of These streamlines /s shown in The figyre.

(b) Q= -¢
At B x=0, Y=|m so That
b= 3ty — (075 = 1w Coor unit width)
At A X=lm, Y=o 50 That
b= 300%(0) - (o)’

1
L

o

T hues )

@ = Y = - | m*/s (per unit width)

The‘ nejm‘/k sign indicates That The Llow is from
}"/j/?t fo /iﬁ'_t as we [look from A Ho 5.

t—-23




6.23

6.23  The streamlines in a certai

n incompres- |

sible, two-dimensional flow field are all concentric

circles so that v, = 0. Determine the
tion for (a) v, = Arand for (b) vy, =
A is a constant. :

From The definitwn of The

stream func-
Ar~! where

Stream é{nc £10.” )

. L 2¢ S
VY 58 i -5 (5. éyzy
So Pt with U SO0 [Ff Fellows Tha? g-g.-zo
and Therefore
b= £O)
(a) F;I' Vé: Ar
2
o =T 7
Iﬂ:rleyrd,[c EZ,//) wi /‘e’.c/be’cz’: L F o 0b¥es
/C/lé = -ﬁr dar
°r = = ALty L)
¢- z ‘

//wdél/”' 5/}1:3 w s Nt  a :4

nction of &, 1F Sollows That

)
= — 4
Where C t5 an arbitrary consthnt.
(b) .Sm;n'/ar/gj éy V5 A—/"'l
Ja == AT
or
éﬁ = —-A jh r +C
C-24% |

*2
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6.24*

sible, two-dimensional flow field is
v =3x% +y
For this flow field plot several stre

The £ um’:lén %or Qa af‘reem/
/n 7‘ée eiaa;é/o'n for The
given Stream +unction

(-/): 34
1t Follows That fhe eque

-

ne is dound by sething
stream function . Thus, for ThHe

an incompres-

amlines.

() = constant

*y +y
vhiwy of o.  shegmlne is

Y

o=

J

Where variows Constant ve

L+ 347 |
tlyes Can be assigned 4o Y

+o obtain a Family of Streamiines. Tabulated results

for =1,2,3 4 and a plot showing The streamii s

are 7/“?/1 be/o «

Y= y =2 Y =3 W=4
X y y y y
-5.0 0.0132 0.0263 0.0395 0.0526
-4.5 0.0162 0.0324 0.0486 0.0648
-4.0 0.0204 0.0408 0.0612 0.0816
-3.5 0.0265 0.0530 0.0795 0.1060
-3.0 0.0357 0.0714 0.1071 0.1429
-2.5 0.0506 0.1013 0.1519 0.2025
-2.0 0.0769 0.1538 0.2308 0.3077
-1.5 0.1290 0.2581 0.3871 0.5161
-1.0 0.2500 0.5000 0.7500 1.0000
-0.5 0.5714 1.1429 1.7143 2.2857
0.0 1.0000 2.0000 3.0000 4.0000
0.5 0.5714 1.1429 1.7143 2.2857
1.0 0.2500 0.5000 0.7500 1.0000
1.5 0.1290 0.2581 0.3871 0.5161
2.0 0.0769 0.1538 0.2308 0.3077
2.5 0.0506 0.1013 0.1519 0.2025
3.0 0.0357 0.0714 0.1071 0.1429
3.5 0.0265 0.0530 0.0795 0.1060
4.0 0.0204 0.0HOB 0.0612 0.0816
45 0.0162 0.0324 0.0486 0.0648
5.0 0.0132 0.0263 0.0395 0.0526
/
(C&/? L )
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6.25*%  The stream function for an
sible, two-dimensional flow field is

v = 2r®sin 30

0=<6=n/3.

The eguation —4)*'4 stveamline

15 Afound b

incompres-

For this flow field plot several streamlines for

sethng = tonstant

Wheve various
obtasrn a family of s#

“7/1/( & ,c/ot oFf e datla

Fiven below where X =
theta  sin 3*theta r Y=
X
0.0175 0.0523 2.122 2.121
0.0873 0.2588 1.245 1.241
0.1571 0.4540 1.033 1.020
0.2269 0.6293 0.926 0.902
0.2967 0.7771 0.863 0.826
0.3665 0.8910 0.825 0.770
0.4363  0.9659 0.803 0.728
0.5061 0.9986 0.794 0.695
0.5760 0.9877 0.797 0.668
0.6458  0.9336 0.812 0.649
0.7156  0.8387 0.842 0.635
0.7854 0.7071 0.891 0.630
0.8552 0.5446 0.972 0.638
0.9250 0.3584 1.117 0.672
0.9948 0.1564 1.473 0.802
(ce

(7 The equation for The stream ﬁ/na‘/o/r Thus, +or The
gilven stréam function |
= 2,35n 30
1t follows THat The 651147510” of a  streamhne 1S
/
F= / ¢ )"
2 s5/n38

eonstant values can be assigned 4o Y
reamiines .

Ta bu /4 #ed P‘é’.ﬁaH‘S
Ffor ¢ = / 5, and 1O 4 re
)"d&s@ @M’( ‘7 P‘S/n(g‘

1 y=5 y=10
y x y X y

0.037 3.623 0.063 4570 0.080
0.109 2.120 0.185 2673 0.234
0.162 1.743 0.276 2.197 0.348
0.208 1.542 0.356 1.944 0.449
0.252 1.411 0.431 1.779 0.544
0.296 1.316 0.505  1.659 0.637
0.339 1.244 0.580 1.568 0.731
0.385 1.187 0.658 1.496 0.829
0.434 1.143 0.742 1.440 0.935
0.489 1.109 0.835 1.397 1.053
0.552 1.086 0.944 1.368 . 1.190
0.630  1.077 1.077 1.357 1.357
0.734 1.090 1.254 1.374 1.580
0.892 1.149 1.525 1.449 1.922

- 1.235 1.371 2.111 1.728 2.661
/

net )
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6. 260

6.26 A two-dimensional flow field for a non-
viscous, incompressible fluid is described by the.
velocity components

u="U,+ 2y
v=20 ;
where U, is a constant. If the pressure at the origin_
(Fig. P6.26) is p,, determine an expression for the
pressure at (a) point A, and (b) point B. Explain’
clearly how you obtained your answer. Assume

the units are consistent and body forces may be
neglected. '

¢ B(0,1):

A(1,0)

X

FIGURE P6.26

Py

Céeck /v see /'7‘{ f/md »;S /r‘rafa,ﬁﬁ‘/m/. | S/M(é

sl el _Du 5,
g 20X DY ) (£g.6.12)
and For 7’71e' 7/(/6’/1 l/e/aa'fy c/zsfr/éaém;‘fj j—;wxo and 5-;-‘:2/
(F fllows  That W, # 0. Since Flow & not ppotationa’

cannot apply The Bernowll: ejad/bn between any +wo points

In the How £reld.
() Synece V=0, The aw};/n

and ,Do/ﬁi A qre on The

Same stveam/ine . Thus,
2
To v Vo' = By Wt ()
J 24 ¥ Zq
AL The origm  Ny=T,  and a2 A Yy=U, 5o Hat
From Eg.(/) .
Vil 49

(4) Bt B 15 pot en same Stregmline as or/é/h S0 Cannot
apply Bernowlli eguatioy between B and 0. To find f

uUse The Y- &Dm/o@nem‘ of  Eulers ejmfmm:
/Ogg 2y L LJE T%5z + 7/‘2_‘3 b £~ [53. 6.5/6)
Since V=0 and : 7'3 =0
2P
L =,
]
So 77'14,'[ 75
B ’;2




6.27

In a certain tvs)cy)-dimen'sional” flow field the velocity is -
. constant with components u = —4 ft/sand v = —2 ft/s.

* Determine the corresponding stream function and velocity po-

. tential for this flow field. Sketch the equipo
- which passes through the origin of the coordinate system.

ential line ¢ = 0 -

[Frem The detinition of The stveam Hanchion

Ny - _op (Egs. 6.3
w= gt e -k 45, 6.37)
so That for The velocity eam/oo”fm‘:s qrven
é_ff - ar)
2y #
M _ (z )
X z
Lntegrate Eg.() witn respect to 4 to obtan
p”" = f;“/dg + £(:U
P
d =4y + £ (x) (3)
Similarly , inbeqrate Eg.(2) with respect b X 4o obtun
ch :/zdx + 6[5)
oy n
Y= 2x+ F0) (4)
Thus, fo satisty bt Egs.[-?) and (4)
{L: ZX -4y +~C
where C Is an arbitrary sonstant .
From The detinition of 7he Ve;od@ /)oi'tﬂﬁé/
- @_@ Y
“ 2 X v 2y (Ejs. 6. b¥)
So Tt for The Ve/oa'-h; epm)oemenis ?/uén
20 - _ (s)
X *
2¢ - _
75 = Z (6)
(C'ané’:)
49"30
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( Con'? )

Z?nv‘fymi'e Eg.(b') Lok }‘e.s‘pec{'-/-v X 4o obturn

fdd :f—‘fd

‘X + 7[:,/5)

er = —bx + 40Y) (7)
Integrate 5. (L) with repect fo y 4 obiors
fa’;ﬁ = f—z dy + /,f(x)
er d= -2y + L& (%)
Thus, 4o satisty botn £4s5.(7) ana (8)
;ﬁ:—l,cx—Zj ¥ C 9)

wheve C 15 an avbitrary eorsiaut.

Since The e;m/'w/mhé/ ///7'3/
(x:g:::)) en C

origin
6.’71(41‘/@}4 oyc The 93:0 é‘jal
2 y=
or -
g =

t5

A sketch of s [ine

= O /a

9&::0 ) passes Hroush The

Ei [7) So That 7%(
'/boﬁ"ﬂ/'/é/ litne 15
— 4 X

—zX

¢

&-31
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6.28 The stream function for a give
field is

¢ = 5x%y — (5/
Determine the corresponding velocity

L{:’é—(ﬁ :Mz SXZ
aj X

— 5y

n two-dimensional flow

3)y?
potential.

2 (N

Tnteqgrate with respect + x tv obtasy,

/dgl f/

Ly 5]92) dx

g X7 gt £ () (2)
Srmilarly,
V= "%—}f = 5—5¢ =—/0xy (2
and
f"% = —f/oxydg
0
’ ¢= -5‘x32+ £, (%) (4)

To Satishs botn Egs (2)4m (y)

§=(5)r

sxy* + C

lhere ( /s an a

P‘A, f'rﬂ/’j fanJ/ﬂrif

b-32




6.29
6.29 Determine the stream function corre-
sponding to the velocity potential |
¢ = x> —3xy?
Sketch the streamline y = 0, which passes through
the origin.
U= é__‘f = .__é = 2. 2
2y X SX =34
.Z‘n%ef,mz!e wiTh V&c,oecf fo Y 4o 0479//:7
fd‘# = /(3)(2—337‘) dy
or 3
L= 3(x*y- L)+ Lo
Similarly | s o4
DR 7 I TR
and  Integratiie wity res pect T x yields
fa/ 4 = féxj ax
or
Y= 3x% + £4)
A .méi;/‘j 65777 555. (1) ang (2)

Y= 3x*y-y34 C

l/)

(2)

wWhere C Vs an 4"'51"*’4@ Constant , Since The stragmliye ¢=0
/OJ/S.Se_s 777/"0:/;»/7 The 0/"/7//'7 OC:O, Y=o0) it Ffollowys Tat- C=0 4;}4
3
b= 4%y -y (3)
The ezuaﬂbn of The streamlipe
passing Through The origisi is found by y=o J §=o
sefting Y=o i Eg.(3) 4o
yreld i F) V3
g(&xz-gz):@ ! I
which is satished For g=0 ¥=o =0
and + *
7:: = //3—)(
A skebch of The (=0 shemmines
are  Shown /n  The ﬁjwf&. /
'6"33’
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or

6.30
tion

T

jlﬂ;Ji /4r19 )
V‘

8 and

| fd¢
?5“’ |
7; 54.19/57‘7

4

or

asb'

Yy =A0+ Brsiné

where A and B are positive constants. Determine the corre- 1
sponding velocity potential and locate any stagnation pointsin
this flow field.

- i

fn aLe jraéz wﬂ‘?: rﬁs,oeaé

foi 7

5’! A/hr 'I'B

2¢

4

B F Cos
bo?'h Ej_{
=Alnr

+ .

fo b A

reosd

-B sIn

—
—

fa rinedo
,C’ (/~)

(2] qualy)
6 +C

9.

+ 5 ress

B tose) dr

_f_ ,[:[é)

- ’ 9

A certain flow field is déscn’bed by the st;eam func-

Beos o

obtaly

where C

| Sf'aymz l'lem
From Ef
Ef (/) wi

.Sa 7714,'#

a VC bo'/h
negu‘/ Ve

,4-1.—(9

Jo 'ﬁ’lafk
<4z

{3)
™ G =0
.= =0

aos/-/-n/e
Valae

pwm‘: oc.,u'v—k

For
o

/s an arbitrary

Of |

+8

F =
onstan 7‘5
WA

ohere
at O

s

=0

®1?:> f

and

2o nstant-

Vizo ama =0 .

=0 anat O =Tr. From

7710 vesult mdlca:‘
ch

15 7o

. A‘D‘RJCVCV 5/;1(

L

£ de }Ahed . L

)

(z)

;)

e A'anal[?.

-3y
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6.31  TItis known that the velocity distribution. o
for two-dimensional flow of a viscous fluid be-. '

tween wide parallel plates (Fig. P6.3\) is para-
bolic; that is

with ¢ ~ FIGURE ps.
with v = 0. Determme if possbe sURE P6.3|

e’ corre-
spondmg stream functxon and veloc

_‘ ;p{jtcntial .

To  dedermine e stream fanchon let
- (9‘0 D’ [ ] — ( 77._2 )7']

and snteqrate w/7‘71 vespecd fo y  fo  oblar

Jav = [t [i- 2] o

e 3
or ] _ 9
Y - Vc[ﬁ sh;]v‘f,m
Sln‘(c = -g.}; =o § 15 noet a Luncliow of x 5o Tat

¢ Uy [1-$£)]+C
where C Is apn arbrtrary Constant
Io determime 1he velocity potential et
ws 38 = o [ -]
and /m_‘eymie w;h vespect te X to obtain
Jdé < [ 7 [i- )] ax
d= T [x= ]+ £

/—/owewr/ Y - _2TUxyYy > 59

G AR e
and This relationship  canrot be satished Jor all valyes of
X and 4. Thus, There IS hot a velocity potential That
describes THis f/oéd_ C The Flow 15 not ivrotationa) ) .

or




6.32

6.32  The velocity potential for a certain inviscid flow field

1S

¢ = -3 —y)

where ¢ has the units of ft?/s when x and y are in feet. Deter- .
mine the pressure difference (in psi) between the points (1, 2) |
and (4, 4), where the coordinates are in feet, if the fluid is water

and elevation changes are negligible.

.5‘/}1@ The Fflow Field 15 described by a velocrty potential the Fow
65 1#rotational and 7ne Bernoulll €fuation can be appliéd between

any 1wWo points. Thus,

2

A AT Vz

Fzz T FToz
Also, )0 y
= 577 —éxy v= e s -3xt3y
At x=l £t , y=2#F

So
/4‘2£ )(-"’-17‘7%'/7:;7-{-&

Jo

Thas, frowm Eg.01)

—&0)(2) = —12F%
)
7

[l

-30)%% 36)™

i

[4—/
i

met et gt e (Cn ) (18) s 4y ay

Uy ~&(4)(4) = — 7L éﬁ
v = -3 ()%, 34)*=0

1744'5 [éz: {/"“"¢é —5@-)2

y

/ oy
7%—432: Z-%[Vl b

= /1 féz-é‘ fis

2z 232,2 £

I BN

[/—»% £ 226 (vsif)z]

S | %
= X Lk o /0 -/é i l:- ) g > ’
710 2, [ 57 ) 605 psé

/)




6.33 The velocity potential for a flow is given by
¢ =50 =y

where a is a constant. Detcrmipe: the corresponding stream
function and sketch the flow pattern.

ot _ 24 .
[4:9-—'-9-8)( ax

7o cletermiie @ (ntegrate with respect fo 4 t obtan

dy¢ =faxa';1
°er (f)= axy + _,£”[x)
J;t.m‘lﬂrly/

. =24 - _
,7/'-—%;% oy T T

So That
[d¢= [ay ax
°r (= Aaxy T ?Cz-/ﬁ)
76 Satisty both Egs. () and (1)
Y= axy +C

(1)

AJ/)erc C is 4n ﬂrb;;f‘r-grﬁ C&A.S'l-an{:. /.el' C=0 JS» ﬂﬂl‘

b
x ="

br a Siven o The strean/ine pattern s oltine
by sething Y egual 4o various Coenstants. For (L =0

The X and y axes are Streqamlines

and for other values of
The Streaml|ines are

Yectangular hyperbolas
as showpn in the skekch,

()

b-37




C. 34

6.34  The stream function for a t
cous, incompressible flow field is give

U= —-2x —

where the stream function has the unit
feet. (a) Is the continuity equation sati
irrotational? If so, determine the corre
tial. (¢) Determine the pressure gradie
rection at the point x = 2 ft, y = 2 ft.

en

sfi
SE

(@) To satisty “ne coa//}mfv‘giy egaa/ézm'n)
du L r .
ox T 7y =°
For The stream fanction gi1ven )
- Y = £t = —_%..f./' =2 £
u-= 2“5 = 2 5 v X 2 5
So 77?4f
4 o IV =0
OX 24

and The  Continuity eiaq,fw'/y 15 satished.

( Note: hen a Flow Ffield

7he Continuity eguation (5 always identically satisthed,)
() Since
=1 (v _jua ¢
&)i_- 2 5—;—-—3) E;.é./zj
and aa - | é—g- -
34 ° 2x =¢
it Sfollows That LU_Z_=0 and The Flow Freld 15 irroz‘aézbm/.l__fg,
Ths) w= 2% -, = 29
OX 2y
and  integration Y ielcs
p=de+y)+ C

wo-dimensional, nonvis-

») i
s of ft?/s with x and y in |

nt in the horizontal x di-

by the expression

ed? (b) Is the flow field -
yonding velocity poten-

Yes.

| s defined by a stream Function

Where C is an arbd,trary constast .
¢) Wi7h 7The x-axis horiqontsl, .20, and .
~ P ou Y Ee (.5/a)
;£ 2p (g +v ) ) 5
and at yz2ft, y=z2£¢ %5 - _74[2 éf[o) 1.2_5_1-@] = 0
 ¢-33 ’ |

¥
®




4.35‘

6.35 The velocity potential for a flow is given by

¢ = Uyx + c(cos%%)e*(‘?y)

Determine the stream function for thisf flow.

= U +c (:an.—-x ( zn) ) } )

=20

x[2
xle.

2.
L=y

7o determine b integrate with respet +o Y o obtain

fdtl): f[(;fé + (’srnz x)(—é,}f) e—%ﬂda

=14 + c(su Fx )e‘( y)+ £ ) (0
Sl}'m‘lar/

Ve 342 ¢ (i) e FY

or

So That 7 (2#‘
oo [elg e

b o (e @) s o

75‘ Sd,i‘:.ﬂ[y boTn l:gs [/)am((Z)

V=U,Y + ¢ (}/' 2”'/)6? j)

6-39




¢ 3¢
636  The velocity potential for a certain inviscid, incom-
pressible flow field is given by the equation
¢ = 20y - @)’
where ¢ has the units of m?/s when x and y are in meters.
Determine the pressure at the point x = 2 m, y = 2 m if the
pressure at x = 1 m,y = 1 m is 200 kPa. Elevation changes
can be neglected and the fluid is water.
Since The flow is 1rrotationa /,
2,
fJ v, ) - ﬁ' + \.{’; ‘)
+ Oz s
. 1_ b3 2 . R
w1 7h \/ =w "tV Ry The Ve/acn‘y /7:925(’”7‘/4/ g1e4,
. O - = a__? = RX % Zj z
A /00/517‘ /et X=lm and 4 =Im 50 Thet
s - 2 _
L, = g (1)) = 4= vy 20) - 20) =0
ancl 2 m)2 l ﬁ"
Vv, == (4 < .) = /6 s
At po/né 2 X 2m and Y= 2m so That
2 T o
”‘2: 4(2)[2.)-_- /é%" 11;:2(2) —-Z(Z_) -0
anol m 12 -
pre e ¥ )T = 2

4
N
m

d

1]

[VI o sz)

3 NV
+ (7,8’0)(/0 ;;‘3)
2(9.¥1 %)

N

m- __ag:'
(IL Y 25¢ )

2
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6.37 A steady, uniform, mcompressxbla inviscid, two-dimen-
sional flow makes an angle of 30° with the horizontal x axis.
(a) Determine the velocity potential and the stream function for
this flow. (b) Determine an expression for the pressure gradient
in the vertical y direction. What is the physical interpretation of

this result?

(a) F’wm E‘gs ¢.80 anol 6.8

()

0//4 pr o( =3p°
S/m/dr/y

404 ﬁro( Foo
| ¢ U(yto.s:’o-xs;'n?’b") i

j/}'cc

/l: /a//ow_r 7‘714,,9 TR o
| 70504V ana V= 0;5001;/-

f?om 7718— E-'M/er eﬁa

Py~

65 D’/Xcaa(+js}nol.)

fS T (x Casi’o +35m30)

= U (y eosd ~x 3)»{44)

U :: &_)_46 mmt

ot &X

dmt wn‘w 7/"—- CMsv‘mnf auﬂl“gﬁ

or

aP =~ _4./49;,

i

(z-‘g. 6. 8)

Zf(m%éx+

4 @45) s

Y

zj“(o.éuj -

Eg. 6.8l )

0.500¢)

a,hé'n /r? 'fhe WMchd j c/wedm}t

=p (av" wll 4 7/‘%"+L«rj;;) (&.4.51)

‘s.._.‘

C

This vewlt jndicates trat e pressuve a,sh, bubde &

/775//*05'294//0 This 15 hot a4 surprising »Ve’.fu/

The 5€rnou//: €Zu47"/¢m /ndsiates /ha+ (L There 15

j/’)o change 1n Velocity e change 14 Pressure 15
due o The wefgfﬂ‘ of 7‘hc1‘/wd L?

S/m /;/

hy é/msi-alzc Variatwon.

Smce o

L— 4%/




6.38

6.38 The streamlines for an inc
1 are all con-
s directly with

inviscid, two-dimensional flow fielc
centric circles and the velocity varie
the distance from the common c
streamlines; that is

v, = Kr
where K is a constant. (a) For this n
determine, if possible, the stream
Can the pressure difference betwe
and any other point be determined
noulli equation? Explain.

Q-
=

(a) i

6

= Ky

I

A\
¥

.t;ﬂ‘eymfe E‘g. () with

0

ompressible,

enter of the

tational flow
function. (b)

en the origin
from the Ber-

(/;

Ve.s/aec{ te - -Ao 061‘41;4

f dp = - ﬂ:/» dr

or .
Y= - K+ £,6)

dince Y

AN S AL
1t follows That p is net a function of 6 and Therefore

— kE*
[/_-_- als +C

Where C is an arbz"'/w‘a_yg Constant.
() The How is rotational and Therelove Tre Bernowll!

€5ud,7':1'on Cannot be
any  point |, since
Same stveamline .
(Reter +o discussion
of E9.6.57 )

1 a/o/p//'e;/ between The origin and

These /Jo/f:n‘:s are not eon The

7 QSSOC/a.éﬂ/ wity devivation

o

42

¥




6.37

6.39  The velocity potential

b= —k(x ~ y)
may be used to represent the flow against an in-
finite plane boundary as illustrated in Fig. P6.39..
For flow in the vicinity of a stagnation point it is
frequently assumed that the pressure gradient
along the surface is of the form

" (k = constant)

ap
5;=Ax 1

where A is a constant. Use the given velocity
potential to show that this is true. §

Y
—

W/

FIGURE P6.39

Py The velocity Paz‘:?m‘/é/ 7/;;’8;1

=22 - _24x ¢
IX
| v = g_ﬁ s - Z'é_(j (z)
and The J-/é?ﬂu‘m'/: /)o/éz', occurs at The origi .
For Thé 514@0’5, Fwo - dimpnsiona!  HHow
— P _ u u
2_5;_/0(“&)(1-7/-@) (Eg.@;/a)
and 4/0;47 The surface (ﬁ=”) v =0 So That
2P . Ju
ox T %5k )
/—’;’»pm 57,(/) U ==-24X and Theredore
dU - _ 5/
o Z 12
and 55.[3/’ becomes
é/? . 2
— = 'Zoéo( 4 =
o /0( ) (- A) = 4k
or
' é_f. = A X
. X
Where A =ip*,
643




6. ¥0 |

6.40 Water is flowing between wedge shaped
walls into a small opening as shown in Fig. P6.40.
The velocity potential with units m?/s for this flow
is ¢ = —2 In r with r in meters. Determine the
pressure differential between points A and B

-

fﬁ. + v_ﬁl = :E'g -+ -‘-/EL
r zg ¥ 24
Alens  The /701'1.70'7{4/ Surface. , U
- 28 - _ 2
FoooF F
So ’/ha—f - - _3;
V=7 T F
Thas,
- 2 . _ym
V’i 0.5 5
and from Eg (1) |
_p = L [v oyt
4t 29 L ? ‘s
3
- G.90xi 23 [}
1 3
;.(¢,9/;"3‘—,)
= =T7/o+ R

FIGURE P6.40

O, and
Ve = - 4m
B 1.5 =

/1)

6-94




6.4/

- 6.4!  Anideal fluid flows between the mclmed 1
walls of a two-dimensional channel into a sink
located at the origin (Fig. P6.41). The veloonty

- potential for this flow field is

¢ = o ln r
where m is a constant. (a) Determine the cor-
responding stream function. Note that the value
of the stream function along the wall OA is zero.
(b) Determine the equation of the streamline (A
passing through the point B, located at x = 1, - FIGURE P6.4|
V=4 , e S : ]

(a-) ?- = , 9¢ = a¢ g _ﬁ
r-F 26 2F 2Tk

Lhteqrate Eg.lU) with respect 1o 6 to obtor

/c/l,b /—”1’ /6

or
Y Z7 + % )
Since _oy /adS:O (z)

Vé: or Y-

Y is net a funchon of +  so Eg.tz) becomes
m 8

Y= % tC

Where C 15 a Constant. 4/59/ P=0 for 9:%7'

Jo That

N

C = "

—_ " e—

A
& /
b (2-F)
(5) At B tfane= 5o et © =133 rad. From Eg.(3)
The value of 94 Pass/nff? 77%"&147/) s /Jg/}y?‘ /8
= m ("35 ’)~ 0. OYSOm
and Therefore The 85414{'/04 of The Streamline )pe&smj Throush B

/s /
0: 0#50’7”" mn /27'..6

er &= /(33 rad

(, Mote! Tt can be seen Lrom £y . (3) Tnet The Streqmines
are a/l Straight lines passing Through e origris. )

An d

C~4%5

o
@
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two-dimensi
P6.42 is

Is this a suitable velocity po-tential f
the wall? Explain.

IF This s a suitable § Hhe
Value along the wall (since

?

onal flow along the wall

¢ = r4/3 cos %9

shown in Fig.

or flow along

It is suggested that the velocity potential
- for the flow of an incomipressible

nonviscous,

corresponding (f must have a constant

The wall must (o ¥ respond to a sfrem//'ﬂe).
7

L 2
Yt 5s- L+ ws o ‘”
Trrteqrate Eg.0) ity respect to O fo obtuy
| 12
Jdps [ £ 10 Lo
or %% .
§ = )L/ssmé‘féf,l:(k) (2)
S/m//ar/_@
g P R R A -
(- B -
and L4
" [c/#‘ =/§\/‘GJM—;¢9 dF
or ¥
Y= Fisimto +£(8) (3)
/o Sa.é/sz% bolh EZS.LZI) and (3)
¥
i = /—/35/19-;9 +C

¢

Where

Along one section of e
The ofher secdon @ =37
Constan? value a/on?
/oo}fnﬁé/ Can be used

Is an arbitra

H

The wall and The

Yy C’oﬂsém'f.

wall, =0, and G=C. Along

and $=C, Thus, B has a

given velocity
o represent Flow 0/007 The wall, Yes.
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6. 43
6.43  As illustrated in Fig. P6.43 a tornado can be approx- Y
imated by a free vortex of strength I" for r > R,, where R, is T~
the radius of the core. Velocity measurements at points A and s P \\ A
B indicate that V, = 125 ft/s and V, = 60 ft/s. Determine the / L \
distance from point A to the center of the tornado. Why can the / Q \ \
. [ / R\ \
free vortex model not be used to approximate the tornado LN LIS 4
throughout the flow field (r = 0)? ‘\ \ ;) A B ¥
\ ~d_7
\\ // 100 ft ‘
AN e T
~ - e

F:W a ﬁ"ee Voré&(

Vg = -/E (Eg c.8é)
Thus, 2t K V5= /z:;'é.?} se That K =/254
and at g, Vps o ff S0 fut K< b0ty
There fore |
/25/2 = GO 'PB
ano since
, by - by = /oo ¥4
It follows Tht
nfg'zév(ﬁo+g)
or
by =923 #1

The tFree vorlec cannot be uwsed 4» approxmate a  tornads

Throughout  The Fow Freld Since at F=o The
veloeity becomes 1nFin/te.

G- 47
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6.44 The motion of a liquid in an open tank is that of a combined
vortex consisting of a forced vortex for 0 < r < 2 ft and a free
vortex for r > 2 ft. The velocity profile and the corresponding
shape of the free surface are shown in Fig. P6.44, The free surface
at the center of the tank is a depth & below the free surface at
r = co. Determine the value of h. Note that A = Rtorced T Pirees
where hy,,..q and hg,, are the corresponding depths for the forced
vortex and the free vortex, respectively. (See Section 2.12.2 for
further discussion regarding the forced vortex.)

For forced Voptex
= @75 ¢

. 2%
and wiTh FZ=o a.:é = C

O ————
Ug, ft/sr

r, ft

BRFIGURE P6.a4

5 4+ Fellows That C=0.

(Eg 2.32)

Also, Vi =re and swce Vp=Ip #tfs ot r=2Ft

v = /D%E = Cg-f,
z ft |
Thus, at r= z+¢ 2 2
’ L wEr® (5 %)z #) = |55

2= zg 2 (srzz.f.é;_)

For /ree, z/orLLPx (.Sec Exmm;/e i.L)
1=
7= §mirtg

Where [T=zmr Us

P3) ﬁéb 2 2
2 (arvB3) _ yr(cR) (0 E)

s SmTrr* 2 yﬂ"(zﬁa)z(ﬁ'zz—?i‘
Thus,
4 = h + b = lssft+lssft =510 FE
- —/-'orced ﬁ-r.gg
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C. 45

6.45  When water discharges from a tank through

an

opening in its bottom, a vortex may form with a curved sur-

face profile as shown in Fig. P6.45and Video V6.2. As
that the velocity distribution in the vortex is the same a

sume
s that

for a free vortex. At the same time the water is being dis-

charged from the tank at point A it is desired to discha
small quantity of water through the pipe B. As the disch
through A is increased, the strength of the vortex, as i
cated by its circulation, is increased. Determine the
mum strength that the vortex can have in order that
is sucked in at B. Express your answer in terms of th
culation. Assume that the fluid level in the tank at a
distance from the opening at A remains constant and vi
cffects arc negligible.

c

From

6b,
/-72
St g

Examp Je

-

S

Alr will be Sucked inty

~XW??ZS
YA
£t*

—

Jol %

]

-
-

ge a

arge
ndi-

maxi-
no air

cir-

large
scous

,D.l/oc When

m FIGURE P6.45

| #  for

k=244

Zs

~ 7 (2f2) (32,2 £5) (-1 #2)




6. 40

6.4L  The streamlines in a particular two-di-
mensional flow field are all concentric circles, as
shown in Fig. P6.4,. The velocity is given by the
equation v, = wr where o is the angular velocity
of the rotating mass of fluid. Determine the cir-
culation around the path ABCD.

. " FIGURE P6.46
[7: 75 V- ds i

ABcCD

P
~7(Wé£d9 + [ % dr */T/;aa/9+ v dr )

AB B¢ co DA

4
S
~ -
Q
N
¥
S
QD
3
X
oY

wr, Eg. ) becomes

6[ ‘
[T= [ whide + 0 +/&) a*cdd +0O
6, 6,

= Wb (6,-6)+ wa*(6-06)
or

M @w(86-6)(4*a*) = wde (b*a*)

6-50




6. 417

6.47

Water flows over a flat surface at 4 ft/s as sh
Fig. P6.47. A pump draws off water through a narrow
volume rate of 0.1 ft*/s per foot length of the slit. Assume that
the fluid is incompressible and inviscid and can be repre
by the combination of a uniform flow and a sink. Loc
stagnation point on the wall (point A) and determine the equa-
tion for the stagnation streamline. How far above the surface,

H, must the fluid be so that it does not get sucked into the slit?

¥

own in
slit at a

esented
ate the

B FIGURE P6.47

$= 4&&{/‘%32177 Sink Utsing - —2/)177“9
Thas, v - .
74- iy L/ cos® — 2
and 7/@: —-?_ﬁ_/f:: -U sip B
.4—/:9/:7 The wall VYp =0 , @nd The s7agnation poinl  occurs

whevre V=0, So Tmet Lrom Eg.(2)

- 0o) _ _m
o= U tos(o®) Py
and Therefore
I
=
2mr

For U= L/é% ard m= O,

of 0.2 '.’.j..zL rust be use
Which only one half

Ve

fnd
™y

2,
2 ’_g (f?oz‘e Thet @ Source sﬁenjm
d *o obtain 0.) f}x Throush slit
1 1 '
of a fall Simk). Thus,
_ﬁfz

C——

—

0.2
K
2r (4

and The Jtagnatios poini

to e right of sIi't.

(

E

0. 00796 £7
L £
S

Is on The wall O,00796 £4

con?)

)

)

-5/
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(con'?)

The valne of W at The
/s 7 ero [53,/) so 7hat

stagnation pont (i=0.00106 f2, 6=0°)
The €guation o 7he o¥a7n4ém,1

streamliine is
- . e
= stn B — =
U Fsin 177,5
or ‘
Fsmme = M »
Zr
Since Y= rsine  The ejaaﬁma of The stagnation stegmline
can be wmh‘en as
zadl
j -?.T"Z/ 9

Fluidd above The zv‘ayzmém

u Strveamiime wil/ not be sucked int>

Slht., The maximum C’/l.s‘fﬂhce/ H, dfor The stagnation stregmine
OCCurs as & —> 7 S0 That .
- 0,2 %
= .z@w'g = 2 T = 0.0250 £
- ™ bt
2(¢Z£¥)

0;/0&: LAl the Fluid  below

The stagnatieon streamline must pass

Through 7The slLt. Thus, from conservation of mass
HT = flow 1nts sihit
er W= O1EES 0, pzso £2
¢ ~ :‘-'-é

w/m,A C/)ecl'(_s‘ w/7‘71 The

answer above )
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6. 48

6.48 Two sources, one of str
3m, are located on the x axis
the location of the stagnation
sources,

ength m and the other with strength
as shown in Fig. P6.48. Determine
point in the flow produced by these

2t - 3¢

C+m

BFIGURE P6.48

Since 1he Flow From
divection, 1+ ts only
Vadeal Comporent?s Cas
Forn -

each source Is 17 The radial
along The x-axis That +pe +wo

1 Cancel and create « Sﬂiﬂw?‘wk

Y
ko2 R rte 34 ’
(") e rshg —ﬁé— pzs-lns ~——ﬁ—%(z)
\ e_.l——% —k ) 3 .3 A x.
N R I T R G
For Source (1) m
’ﬁ;/ Zmrv,
@na for Source (2)
p"' = 3/7”
rz  zrr,
7773 5}47/74/‘/0'” /70/07/' OCCU Vs wée/e ’b,:/:?;z Jo 7714.1“
N 5/”7
2 yl‘zsa‘-a; 21 25445
dnA .
/25'}145 _-_-_j
Vi staq
4lse, + = 2L+3X =54
/ 5htj Z Slzﬁj
Jo 7‘)744 5—/€
h.:‘:/-aj-f_";l?.:'a‘uj -
’7.:’7‘4_5 . -“g L
Thus
/ 5 - -
= — (z0-2 )— 0. 754
xf&j ( ﬂ 4 z
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6.19
flow is given by ¢ = (I'/2n) § — (m/2x) In

where I" and m are constants. Show that the angle.

a, between the velocity vector and the radial d

rection is constant throughout the flow field (se

Fig. P6.47).

The velocity potential for a spiral vortex

N

b4

i

€

oy 7The ue/oc/'a‘-_y potential 7;“}(;1)
- ac/ - _ . L 3_05_ _{..7
=537 20 % Fie T arr
St —_ —
Ihce [/.é;:(V/Cosa(
and — “ -
V = W; - + 7{; 69
7716/1 ., &
Ve & 2
Cos e LS LV
VI Vi +
[ /
U'b 2 /£ * '
\ﬁ -+ (.7—/_;) | + -27:-)—)
i - z
27

h

|

Thus, for a given [

a. Constant.

R
1"[;)

and m The ang/e o s




6. 50

A, For a #ree vortex

6.50 For a free vortex (see Video V6.

2) determine an ex-

pression for the pressure gradient (a) along a streamline, and
(b) normal to a streamline. Assume the streamline is in a hor-

izontal plane, and express your answer in
lation.

terms of the circu-

k orten ,» (Eg s
2T S
So iz7‘7!@'5 ;
; | a(D - . — Sb,-_-_- /—’
VL E /‘3,9 19 D; ay Zm
S/m_e 777e Free (/ori-exr represmk an /rméa,é/om/ #/ow
fF/e[a/ 7re Bernsulls ﬁguwﬁmn R o
—75 V?. /
. Flzpt® |
/s Valid between any ‘L‘wo ,Dom')::.,
(@) 4/47/17 a J/Tewn/m? (r= é&nshni) V; X, emshn#
and 7{;‘,“’0 So That %rwn Eg (1) witn
2 loastant '7‘}»< Pressyre 1,4_‘69451‘241‘) _é,e‘.) ‘
Y ; Tt F
55 =0
(8 Worma) 4o The streamlie with Vi=0 and = Constuut
F g BB gz < conshnt
o 77"‘”* | S TSI IR R
2P < 232 205 P 225
2% “gor - 2k
‘ / \ 21mr 2rrz/
—~ /0 }72»
i 3
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6'5/

6.51  Potential flow against a flat plate (F

v = Axy

where A is a constant. This type of flow is com-

monly called a “stagnation point” flow since

can be used to describe the flow in the vicinity
y
y
0
Z LTT77; L
X
@
"FIGURE Pg.3]

Y= Axy + %”77_9

:'or '/716_ Aamp 1776 sédj/mfa
X=0, fj:*ﬁ_ (927?7:) f =

ig.
P6.5] a) can be described with the stream function

of

the stagnation point at O. By adding a source of
strength, m, at O, stagnation point flow against
a flat plate with a “bump” is obtained as illus-
trated in Fig. P6.51 b. Determine the relationship
it between the bump height, 4, the constant, A; and

y

Source
)

= A Flsmze + 2o
2 2T

oh point will eccur at
£). For The given  stream #uncivo‘n)

2 2% . an
7,}:;-,,23- ’4/‘6‘9‘529*’.27”’ cr)y
and
== — ?__‘f = Ar sm 216
e JF
The fom'z’:} o= g, /‘=£) ill be a4 otagnation po/nt /F
V.=0 since Vi =0  at  Tis point. Thus} trom E9q.01)
O = Ah Cos T + )
or /M
Ah 214
Gnd  Theve fore
£
2T A

(56




.52

6.52  The combination of a uniform flow and a source
can be used to describe flow around a streamlined body
called a half-body. (See Video ¥6.3.) Assume that a certain
body has the shape of a half-body with a thickness of 0.5 m.
If this body is placed in an air stream moving at 15 m/s,
what source strength is required to simulate flow around the
body?

[he widTh of /)o//\"éoa'gy = 2Zmwh

So Tha t ) (@'5;;">
b - _Ey
LT

From Eg.(.99

_ m
b= zn-

(See Fig 6.24)

Wwheve 1 is The source strength, and Theveforve

[

v = 2TlL4

Ve

= /.50 =

-~
—— - —

“

0.5
21 (15 —5”?’—)/—_,%”
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é.53 |

(a)

6.53 A vehicle windshield is to be shaped as a portion of a half-
body with the dimensions shown in Fig, P6.53. (a) Make a scale
drawing of the windshield shape. (b) For a free stream velocity
of 55 mph, determine the velocity of the air at points A and B.

y
Windshield

—

U = 55 mph /"'
f

A" 2.0ft
BEFIGURE P6.53

From 1ne 1[:9;4'{-
b+ reose = 2 £¢ (r)

Fsine =154t cz)
ana br a half-bad,

p= b(m-8)

sin B

(L—‘g, 6.100)

The Above ég'ua.rba'd.: Can be eamb/n'.c’o( + ?IJf

/ - I -z

r———— —_ m—

-8 tan b I+
@nd a Frial dnd e

vrov solution fo, & Gives
B=0.839 rad (4g)

So 7That

L= Fsiné _ 1.5 £+

= = 0[95/ 76'/:
-6 -0, 839 rad

Thus,

b= O4sift (Tm-0)
Sin &

(3)

Elual‘lﬂﬂ (3) f/n/'as The p/'dﬁ;'/e o/~ The
L,U/‘ndshr'e/a/ an weth X = réose and

Y=Frsinb The X and Yy coordinates can be
0}#/;4?/{ 7;:514/47‘?9( dd*‘d anAd a Plr).ﬁ
0f 7The data Lollows.

( @49//%—)

(9 -58




-.53

(+)

(Cont) Theta,rad T, ft x, ft y, ft
3142 0651  -0.651 0.000
3.042 0652  -0.649 0.065
2042 0655  -0.642 0.130
2842 0661  -0.631 0.195
2742 0669  -0.616 0.260
2642 0679  -0.59 0.326
2542 0692  -0.571 0.391
2442 0707  -0.541 0.456
2342 0726  -0.506 0.521
2242 0748  -0.465 0.586
2142 0774  -0.418 0.651
2042 0804  -0.364 0.716
1942 0838  -0.304 0.781
1842 0878  -0.235 0.846
1742 0925  -0.157 0.911
1642 0979 0069  0.977
1542 1042  0.030 1.042
1442 1116  0.144 1.107
1342 1203 0273 1172
1242 1307 0423 1.237
1142 1432 059 1.302
1.042 1584  0.800 1.367
0.042 1771 1.042 1.432
0.839 2015  1.346 1.499
4.600
1-400 /
1-200 -
1-0 !/
t .
= / 0.800
0:200
-1.000 -0.500 0.000 0.500 1.000 1.500
X, ft
2
2 b ) (Eg. ¢.101)
i U (1422 056 + Ee 4

Rint A 15 a stagnatis

‘n Point S0 Thet Vy =0

AL The %’P of The windshield (po,'nt B) O =0.839 rad ani

r= 2.0 £t 5o Thet
A (s'fmph)‘[/ +
VE:: éZZ mph

0.451 £t
2 01 £t

2

) e s (0. é?BYVM)

2.65/ ﬂ-
2, o/Fé-
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6. 5Y
6.54  One end of a pohdl has a shoreline that resembles a

half-body as shown in Fig. P6.54. A vertical porous pipe is lo-
cated near the end of the pond so that water can be pumped

out. When water is pumped at the rate of 0.08 m*/s

3-m-long pipe, what will be the velocity at point A? Hint: Con-

sider the flow inside a half-body. (See Video V6.3.)

through a

15 m

m FIGURE P6.5%

/%r Q /’147/7[-606‘/9 )
Y = U Fsinb + 2—% & (Eg.6.97)
Jo 'fhaﬁ
_ o .
'V; = 2—-;’ = U sneé
and
- L 2¢ - e
7//:- ¥ 35 U tos 6 + 270
7%0/5/ f«-f pall;i' A , 625)) F = 18 o ancd
v =0
= M~ U + daad
7= Ve z2m (1) 72
or & Flowrate of (9,0(»-';13 In  a T /onj )Dl;oe) he
Source strength 15 O g_!? __’;_?_',z’, Since
- m
b= (g ¢.99)
1'/76/1 Lw?’h -6'-"5411 o (0«06 /‘441')
U - — = ? ? - é Mmqe
2mb 37 X107
21 (5m)
From EZ, (/)
(0.06 m*)
4.3 /p*?‘,}q - BEARK]
= ) A, D
V; s 27 (/5m)
-4
S
6-CO
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6.55*  For the half-body described in Section
6.6.1 show on a plot how the magnitude of the
velocity on the surface, V,, varies as a function
of the distance, s (measured along the surface),
from the stagnation point. Use the dimensionless ‘ . 1= :
variables V,/U and s/b where U and b are defined , 1
in Fig. 6.24.

On The surface of The /)ée//néac/g
b (mr-0)
s/n & (£g. 6.100)

= |/ () *+ (49)*
with X =kctos® and Y= v sint. Lt bollows That

dx = Fr (—Smé)r/é + Cose dr
dg = v (tose) do + snp dr

/-—::
and

and Therefore

ds = || rae)* +(@n*

= || F2e A0V ga
S V—l—f-dg)dé

Llet s*= S/é gnd P‘“=/‘/é Jo That

oV

[ K, )2 d }"’# 2', C/9
l/(// ) + _d—g) (/)
From EZ' LY
9/_/:;__ _ Sinb t+ (r-86)cash c2)
do Sin b

77)145 *fhe arc /enjﬂl J* tIs  qi1v/en ég

" / o (%) de

(eont)

ll\

fov

-Gl




6557 (Con't )

The velocity , V;, on The surface of The half-body can be

Obteined Fom £9. 6./0/

¥ —1/-:-’- = ['/ + -

4 U
771«5/ for a 7”}” e ) y¥
S* bLom Pj,@)[ and |
be //7'-/'87/446’;7/ 4sins The

/ 41-'1( [)C
I: 2 Z g!-”t- «.'-H} ot
L=

KXo &, Tabylited 4
a /’/Dt o The data

Theta, deg Arc length,

Written 15 The form

y
| L *
20028+ o]

F*

Can be obtwneA trom £g. 6100,
¥+ Hom £g ly). Egam‘/én (3) Can

'/"/‘a,oeaoz'ch/ rdle ,c.2, o
%) where Yr | (4% () and

la aGre given below agud

is given on The next page.

s/b  Velocity, Vs/U

180 0.000 0.000
170 0.175 0.174
160 0.353 0.344
150 0.535 0.508
140 0.725 0.661
130 0.927 0.801
120 1.144 0.926
110 1.381 1.032
100 1.646 1.119
90 1.949 1.185
80 2.305 1.231
70 2.737 1.255
60 3.281 1.259
50 4.008 1.244
40 5.054 1.213
30 6.749 1.169
20 10.142 1.116
10 21.549 1.058
. 4 4
Calculated Calculated
from Eq.(3) from Eq. (4)
/
(Cont)

b-b2




6. .55 %

/U

Dimensionless velocity,

(Corr? )

] I I 1 A | i

Dimensio

10 15
nless arc—length,

s/b

25

6-(3




6.5¢

6.56 Two free vortices of equal strength, but opposite direction
of rotation, are superimposed with a uniform flow as shown in

Fig. P6.56. The stream functions for these two vorticies
¥ = —[£I/27)] In r. (a) Develop an equation for the

are

x-Ccom-

ponent of velocity, u, at point P(x,y) in terms of Cartesian coor-
dinates x and y. (b) Compute the x-component of velocity at

point A and show that it depends on the ratio I'/H.

f
(@) For vo btex (/)) (’D’:Z_.—I—T Ln

and
Vo=

-
Th

l/(,:-' V;, Sin &
y-H

as shown .

Where sin @ = [

(ﬂ—ﬂ)z—rx?-]

|-

. l/z

Onad Y
= [(Q"H)‘-rx"] *
So ’hld.'l:
_ [0 ) h-H )
YU ) e m e

- M
For vortex (7—)/ ‘-Pz- -1

D,
217

. y
. «-—*(() ® P(x, y)
Vs (Y.
= My
H
— ‘ l i
—_ A
ng |
Zaf

B FIGURE P6.56

P(")ﬁ)
" 4N Vg,
)
H
S -X

And .
62" i;]-'Yi as Slvown .
phire. sind =[(‘ﬂ+ W)+ X L] '
and i
yg_:f(bw\,*-r x’] =
So ‘fhai:
(BN
27 (z2mf (y+H)?+£2. (cont )
A




6.5%

Ceont)

Thus, Combining The Fwe
Gives The X~ Component

H:u, +M1. ‘}'
L Y-

b

vortices with the uni form —ﬁlaw

sf Velociy
[%4
H b+H

29T (Y ;H)Z-}X" -

(1)

)
X?.

G+i) %

X=y=zo, Eg, (1)

(L) At point A Wheve gives
[
ws U= 7w

e o e e e e .
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6.57

For

,771u5)

6.57 A Rankine oval is formed by combining
a source-sink pair, each having a strength of 36
ft2/s, and separated by a distance of 12 ft along
the x axis, with a uniform velocity of 10 ft/s (in
the positive x direction). Determme the length

and thickness of the oval.

1]
r-——-1

1]

olas Ol

1
2
¢ "
K}

8,

m )

iy

T muay 4
tan (Z‘(TM— Z]
) and U = /oé?'

T (1655 ) (4 )
30 &

J

i

5,24

length = 24 ana From £35. 6./07

/(.’nj?%r

- %
2 fész)[g"‘{i# + ’] *

Jhe 7”/7/0?/795.5 Z«A Can |

11141 and erre . /455(4me

wi7n klyhi hand side o

)

/3,/ £t

v

be determined Hom E'g_ b.105 &y

value for -4/4 aund Ce’m/bqre.
F Ez.é./a‘i. (See table Lc/ow_)

/has)

Y Z/' [(é)z‘ /) Lan [1 (5.24) %]
©.250 0. 269
0. 25/ 0. 262
O. 252 o 25¢
©.253 0.250 <— use

4

[

~ 0253

and Thickness =

24

= 2 (¢££)(2 253) 3 04 £

A

Cb

(Eg, £.107)

(Eq. 6 10%)




6.58* Make use of Egs. 6.107 and 6.109 to
construct a table showing how {/a, h/a, and t/h
for Rankine ovals depend on the parameter n Ua/
m. Plot t/h versus = Ua/m and describe how this
plot could be used to obtain the required values
of m and a for a Rankine oval hav?ng a specific
value of (L and 4 when placed in a uniform fluid

stream of velocity, U.

Pr a Rankine oval ,
/2
_/_2. - |22+ l]

a " 7Ura
and

(Eg. 6.)07)

;fi 4 [(é)l_ ,] @{;{%ﬁ)-ﬁ] (Eg 6.104)

wheve The lensth of The body is 24 and The wiath 15 2.4

For a given Value oF mUa /m , £9.6./07 can be whved

for Lfe, and Ep. ©.107 can be solved (usmg an iteration
procedure) bor A/a . The wmtio LI4 ean Then be determincd

Tabulated data are Fiven below .

nUa/m t/a h/a
10 1.049 0.143
5 1.095 0.263
1 1.414 0.860
0.5 1.732 1.306
0.1 3.317 3.111

0.05 4.583 4.435
0.01 10.050 9.983

t/h
7.342
4.169
1.644
1.326
1.066
1.033
1.007

A plot of The data. 15 shown on The next page.

<c¢917 It )
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:6"5‘8* (&ﬂ‘i)

10

N

t/h

0.01 0.1
- nUa/m

For o Bunkme ovel with L and K 5/oec:'1fwl-/ e following sheps

could be followed fo determine m and a:
(1) For a given LR determmne The kezmred Value of 7D /om

from The ymph.
(2) Using This velue of D% fom c.q/cu/d:e /g/z From £g. b.lo7.
(3) WiTh The Value of £/e cletermines ) @ne V4 J/cht‘ﬁe'd dettrrmme
The w4alue of 4. g

(&) kiTh 7Da/m and a
s —known, qnd for a

detdermined , The value of D‘/mv
Given U The value of am is fixed

663




6.59

6.57  An ideal fluid flows around a fixed cyl-
inder as shown in Fig. P6.59. Note that the uni-
form velocity is in the negative x direction. }Slhow
that the pressure gradient, ap/ds, is proportional
to s near the stagnation point. The coordinate s
is measured along the cylinder surface as shown.

On The surface of The

R=PB* 2

Cylin der

'Uz(// — 4 sin*8)

brttttts

FIGURE P6.57

&3, 6116 )

(/Voi"e.' Because of 7he symmetry of The Fow Eg. b1/l 15
Valid for uniform Flow th either The positive or pegative

X~ cll‘PeC‘élén.)

Stnce s=a 8
’ 63_8 = af’ & = -—/- i_f’
JS 26 25 x 26
Thus)
o . 2/ o -
3_5 = -i-/ﬂp' (/ é’smﬁeasé)
So 77'4# 2
o R 4/0(7' SInb cosb
2s a. 71)

Near The .'Svfaqm.i-w.n vomt (6 =0)) Sin & X6 and C,J’JQ’«‘S/.D)

and C—‘g,ﬂ) Can be

PP ~ _ 4o B

55 7Yz
7/ms)

2 « s

oS

Cx f»r"essed as

2
= - L/._Lv s

a_z

6-69




6. 6O
6.60  An ideal fluid flows past an infinitely long
semicircular ““hump’ located along a plane U
boundary as shown in Fig. P6.60. Far from the ﬁ

hump the velocity field is uniform, and the pres-

sure is py. (a) Determine éxpressions for the max-
imum and minimum values of the pressure akmg
- the hump, and indicate where these points are

L

located. Express your answer in terms of p,
and p,. (b) If the solid surface is the i = Q strea
line, determine the equation of the streaml
passing through the point § = #/2, r = 2a.

777e_ 5ur1éce 0}0 'iét
Bx fe i

77)6. max/}num /Ure.s;urc
and at These /:o/‘m’:s

On

-

(x)

m-
ine

_Uz(/- 1»45;;:15)

;o

" FIGURE P6.60

hde)
(5‘5, 6.116 )

The minimum /oressare
and at The /o//}i'

occurs where sin Bzo  or at &G T,
2
Blman) = £, +4pV" (at 670 ounT)
Dccuks 'w/:em sin &=/, or at 59:-:”{-)
2
Plmin)s B-3 PV (ut o= 77’)

(b) For uniform flow in 771(

fl)w —
-

to discussion as.

[V‘e/t’r
- I -

4,: -ZQU'

and Thus The egmtzon
This peint s

e S

al

(1-

3
z

2 r
3 a

m’z:z//ue X~ c//recﬁ:on)

(1~ 2 ),m;e
V F*

sociated wi7h The devivaton of E3.6.012).

az

C o
— —_— Jy —
/} (24)") 72

of The Streamiine passing Through

3¢U

—
—

—

2 .
- Ur//“ —f—;_).ﬁ’/hg

2
-;—E) sin &= |

é~7o“




6. 6/

1

6.61  Water flows around a 6-ft diameter bridge
velocity of 12 ft/s. Estimate the force (per unit leng

mated as an ideal fluid flow around the front half of

der, but due to flow separatlon (see Video V6.4), the average
pressure on the rear half is constant and approximately equal

to '/, the pressure at point A (see Fxg P6.61).

pier with a
th) that the
water exerts on the pier. Assume that the flow can be approxi-

the cylin-

Foor ,C}"j_ ¢.29 1t Follows
chélén (-‘/’Ufa@fh &

Ohn a
of & Creulavr cylinder 5
Drag =
For The force on Twe fros
G-
ana due to  symmetry ’?
(AT,

anAd Since e

7he f/oa///ff AHuid bre will

are only Intes

That +he drag
=0 ana & =)
7/«/?/1 5(7

The e j ua,{-/aw

o *'/74 Cos@ adb

4 //4/,5 of The Cylinder ( per anst lengtn)
/ % Cxp ade )
To. Frem Egp. bt

U= //— % s5in*8) /A—-‘;,é.//é)
ested 147 The Force cue bo

lel p=o, 77445/ #rom £g.00)

612—24/‘—%07'2(/—45/;,19)@5(9 4 db (2)
| - %o
1hce ‘ s -
baspdo = smb| = =/
” ,
T
-3 /
and / Sin 9&9:;9‘0’49 = 5//; 9]77 Tz




é6.61 (C’oﬂi) B -
It Follows "4’0”4 é;f (1) That

4

__oUa
Fe,” /0'3

A/aé-z. n!— 777¢ nejaz.‘u/e 5/7;7 md/al-er 7’7u-l~ 774: waéer s Méﬂ"//ﬁ

‘ulling" on e Cylinaer (Front half) 147 The wpstrem divection. )
However , When The effect of fue vear half of The a,//m/e//.s taken |
Inko aC(/_oz/nt (14 real ﬁmd) 771ere will be a net drag in /hc divechon cs,Lﬁow‘i

77ze prcsfwe bt e 1&9/: of 7’71? cﬂndw (Pomt A-} /: 7wu 57
| 7‘;_/_2/0'[)' (1 L)‘S/n 9) ; égé /15)

dw{ wd‘h 9 A |
; .P/}‘" ﬂ ”"i'/o U
J/ézée p=e | f-
VA o
Vm‘f That 7‘71«: ﬂejm‘u/e, pressuve will 7Nc a /ao.s'H':Je K

4/?#( ‘

S ,t' = - /{Z X pifg,aJeded area x = ﬁ X 1.@(/)
5é Tha t ¢ ‘ |

T p L 3 pUM ) = /OU@

F';'z. i /0 | z

7",'}1“5 .

: ’ F;( = F;‘t -I- ‘t’(z‘ »

Lpvia

With the dota g,;w

"
H

@‘5572




6.62 7

*6.62
cular cylinder shown in Fig. 6.26. Show on a plot
ation of the magnitude of the dimensionless fluid

Consider the steady potential flow around the cir-
the vari-

velocity,
VIU, along the positive y axis. At what distance, y/a (along

the y axis), is the velocity within 1% of the free-stream

velocity?
~~~~~~~~~~~ | | T/ e
Hlong The Y-axs V=0  So That tThe maym;‘«de-
of THe l/e/ach‘g J \é L5 é:fmr/ fo / 75 / . JdInce
4 a® .
5 U // 7+ ';,”._} S/né (E;, 6.115)

it follows That alony The posifve y-axis (9 =% , F =y)

V= 1pl= U
or . 2

4 = + "(&'

AT

Jabulated data agnd a

([ 1+ f-:)

(1)

plot of The detr ape Grven below.

.ZZ Can be seen from These rvesults Thet Ao
Yy o
a I /0

The Ve/ac(‘f'j_l/ /s wilhim 1% of 7he Free -streqm l/e/acn‘y g

' ViU 2.000

y/a

1.00 2.000 1.900 \

2.00 1.250 1.800

3.00 1.111 1700
. 4.00 1.063

1.

5.00 1.040 S 600 \

6.00 1.028 S 1500 \

7.00 1.020 1.400

800 1016 1300 \)

9.00 1.012 9

10.00 1.010 1.200

1.100 4 >T
\
f 1.000 i e o4
Caloulated 1.00 2.00 3.00 400 500 6.00 7.00 800 9.00 10.00
from Eq. (1)

y/a

6

-7%
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6. 63

6.63  The velocity potential for a cylinder (Fig.
. P6.63) rotating in a uniform stream of fluid iis
a? r
¢ = Ur(l + ;5) cos 0 + 2n9
where I' is the circulation. For what value of the
circulation will the stagnation point be located at:
(a) point A, (b) point B? |

IREAREEA

'FIGURE P6.63

(a) [Ez, 6.122)

Stk %,eaj T 4rUa

At /90//)25 /)) %&3=Q and % 74//0“5 That M=0.

oy

(b) /4£ /ao//:;t /B) 95.&3: and '//’am Ez,é./wz

[z 4mlUa sin %T = "-'S‘ﬂ‘[f@




G 6

6.64 A fixed circular cylinder of infinite length
is placed in a steady, uniform stream of an in-
compressible, nonviscous fluid. Assume that the -
flow is irrotational. Prove that the drag on the
cylinder is zero. Neglect body forces. ;

27
Drag = 5-‘-/'@6’&5940’9
0

f By spU (1= wsir'e)

2
o 2
Dy«ajz-—. ao/o\CO.SO d6 + E’fU[Cgs@c/g

2T

— .Za./ov“z/s:‘n 20 ¢os db
1))

(é'g, 6.117)

(£g. ¢ 11e)

Since} LT 2T
j@s&d@ = 5);48:} =0
4 0
T
aud . ‘ 39 r ATy
SIn'6 tosedo = 5”; =0
o [+
it Follows That
.Dk‘aj =0
6= 75




®
®
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6. 65 Repeat Problem 6.4Y for a rotatmgcyl-
inder for which the stream function and velocity
potential are given by Egs. 6.119 and 6.120, re-
spectively. Verify that the lift is not zero and can
be expressed by Eq. 6.124. ‘
27 v
Drag = F; = “[ £ (050 ad® (Eg.6.117)
2 2 /75).)79 ) /
- 4 -4 - Eq €/23
= z/ov (/ 4 simbr —— ‘mzlp,z 7. )
Thus T 21
2| [ posodo — 4| siwecessds
D < - AU , - "
raj aﬁ, Los6dd + 7 F s 5
0
T 27
[1 2
+ —-——C—- Cpse sind dB - CD-SB‘JB
a,T)’ ‘I U
o)
Since, T 21
f Cos6 do = Sf‘nﬁ] =0
o P ‘
2T
and 2T 39
SIn’® cosede = M| 7O
3 o
o
2T 2T
aud . "
S Coso sinbde - 5'"2@ ) =0
0 (o]
it tollows thet
Dra 9=0
} 5
(cont)
é“7b
®




o
.65 ( Cont. )
Lift = /4: sinb adb (Eg, 6.118)
WI'HI //9 Fiven 107 L 6.123 it A//aw_s That .
27T .
. 3
. 2 . _ CIB
Lift=— a,f[S;ugdg + f-}o'(f [[smede 4[51:19
am e 27
SIMCP, 21 2T
( sinp de = — C!e»sa} =0
og'n‘ ° 2T
and ‘
’ j sfnsédB < C% (szei-z] =0

0
2T

" J sin6do = (‘% - 5'1”)] =TT
l‘{i ’—[o“ows ’fha'é
Lift s = &pU7 (20 )

mTa U

Thus,
Lt‘qc'[: T - /0 U’

({,Jh:clq ) E%, 6.)2"0.

¢-717




.66

6.66 A source of strength m is located a d

P6.66. The velocity potential for this incompre
sible, irrotational flow is given by

¢ = 7 {nlGx - 07 + ¥

+ In[(x + £)* + y?]}
(a) Show that there is no flow through the wa
(b) Determine the velocity distribution along t
wall. (¢) Determine the pressure distributic
along the wall, assuming p = p, far from t

1S~
- tance ffrom a vertical solid wall as shown in Fig.
s-

1.
he
on
he

source. Neglect the effect of the fluid weight on

the pressure.

(a) h= %;(‘é
Since
3 T
g 52 /Qn [é(—ﬂ) + 3 ] =
and 2
2 2
v Ln [()c-bq)-if)] ol
't A//owS‘ 7‘744i
oo [ a-2)
“T [(x—- ey>
/—\r/on_:, The wa//) X=0, 30 thyt
o | =28 .
b = | R2+y4*

o

FIGURE P6.606

.2 ( x-2)
(x-2)%+y*
2 (x+X2)

Gera)*+y*

2 (x+,€);‘
Oe+2)*+Yy*

)

=0

T/)aSJ theve is no flow ‘fhraujh The wall.

(b) The velocrty along wall ) Vi 2V since w=0. Also

Ok

and with The g1

o¢

Y

2

ven Ve /ocf'/y pe tentia)l

e [ 29 2y
| (x-2) *+y*  (xeR)*+y> (1)
(QDM ,t )
6— 78




6. b6

(Cangz‘,)

/}/ony The wa//j X=0, and From E‘g_f/)

cpe | 20 29
Vhf‘.' v 47 [£2+5L + Qz+gz.]
or
= m /__ 9 )
V, = 2 T
(c) Fav /ram the Seurce, 70-.:,/2 and \V=x0. Thus)
/-E‘-’- = @’Z + \/:,
& y 24
theve £ s the pressuve ot the will, so Thet
; ! 2
ﬁ,’ B3/l VY%
With V. given l:y; Eg .2,
2
om Y )
73 = -FO-‘ "2-77-2 (’Qz—f'ﬂz

(2)

£€-79




6. 67

6.67
horizontal plane surface as shown in Fig. P6
The longitudinal axis of the pipe is perpendicular
to the plane of the paper. Water flows radially
from the pipe at a rate of 0.5 = ft*/s per foot
pipe.
ft?) between point B and point A. The flow from
the pipe may be approximated by a two-dimen-
sional source. Hint: To develop the stream fu
tion or velocity potential for this type of flc
place (symmetrically) another equal source on
other side of the wall. With this combinati
there is no flow across the x-axis, and this a
can be replaced with a solid boundary. This te
nique is called the method of images.

A long porous pipe runs parallel t

Determine the difference in pressure (in

For a  source )

¢

-
-

22 Lnr

where F s rmeasared +v
system shown in figure
Frz x*+ (

and

/_7.: xz+ (

oW,
the
ion
1XIS
ch-

0 a

L1. T %é pipe

of ¥

Ib/
/7/77777777777/777?777735 :

|~————4ft-————~

«%

( lmage
source )

nc-

M fn vt
‘N

-
-~

om 1he Source. Wi'th the Coordinate

.‘7"3) “ ( for u/éper source)

y+3)*

([or /ower Sou rce )

S0 That for The Combined sources

¢ = %{z@n [x +(g—3)‘]+ /Qn[x2+(£1+3)1_]?
S/})ce) -éj
“= 3x
and 2 _a)? ) = 12X
;% B"[x + (9 3)\] X2+ (y-3)*
9 2 T - ZX -
.5_;(,0,,, [x +(y+3)] Tt (519"
't fllows That
- m - 2x ] 2X
“s 777"[ Xe(y-9)? T (54-3)1]
,4/9177 The Wa//} y=o0, V=0 and “heretore
. m 4 X )
Vo=« = rl 3erq
(cont)
6-80

FIGURE P6 &1
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o
6.67 (Con?)
At 'Po/;)t A} X = 4‘,5'&) and wiTh om = O.5T é_éz)
AR
Vo 0TS [_#OR) ] z gt
e TSIV L
At )Do/hf B) X=0, and
Vs =©
77?&15) 140m 777e Bernoull. e’gaaézén
2% .
f‘?. + \./.,“LE = By Vura
4 29 x 24
oF
/] 2
7‘%‘7!,’4 = ?‘3[" Vw'A
b
= /é:Z.‘/ﬁs)(_z;fé‘z‘ _ :
2 (3225) *° s = 0.00620 psf
Sa, E * ——
L-31
®




.68 |

6.68 At a certain point at the beach, the coast line makes a | ‘ ‘ ‘
right angle bend as shown in Fig. 6.68a. The flow of salt wa- : !
ter in this bend can be approxxmated by the potential flow of ‘

an incompressible fluid in a nght angle comer @ Spow that
the stream function for this flow is ¢ = A r?sin 26, where A is

\%water
Dividing

streamline

a positive constant. (b) A fresh water reservoir is located in the
comner. The salt water is to be kept away from the TESErvoir to
avoid any possible seepage of salt water into the fresh water
(Fig. 6.68b). The fresh water source can be approximated as a
line source having a strength m, where m is the volume rate of
flow (per unit length) emanating from the source. Determine m
if the salt water is not to get closer than a distance L to the cor- Fresh water Fresh water
ner. Hint: Find the value of m (in terms of A and L) so that a ; source

stagnation point occurs at y = L. (c) The streamlin¢ passing (@ (b)

through the stagnation point would represent the line dividing

the fresh water from the salt water. Plot this streamline. W FIGURE P6.63

(@) For the ;7“,‘6,” Jv"rmm ﬁmu‘/on

(// /4‘1"25”»2&-
}2/0/77 9 O %_0 A 9_:..”./2 U/:a e

77’“‘ %*’- rays G=0 aunu B=Th can be replaced
LW7‘71 a sa/rd bmﬂm’mfy 449;17 Whieh The stream
/‘un:—f:wy JMusf be Constant. This baandﬂr;'yw,,p.
forms a rignt angle ank nerefore This smm
-ﬁ{ﬂu‘/oa Can —be used 7o W/Jre.st’n}? How “«
i)"/ flz;‘ Km;r/e Govner.

| (b) 5/nc~e.

L 2% i2Avepsze
. rT rooe i
w£‘ : &?W./z. 5 R S
; U= ZA peosm = — ZAr

For a source «/oati:ed at The origin

i
dand ’1/,:‘,1-3"% A a e

o Create o stagnatwy peiit of pzl and 87
let  Vi=Tr ‘ .




s,

e)

7/&:4 a

L 77m.s The ﬂgam‘mn
: 7‘71( Svldﬁnad—/ah Pomf' /3

AL = Arln 26 + 2AL%6

\/77- Lz—,zt.’@' | |

and RTINS Vﬂ-— 26
L ¥ am26

(Con'Z)

ZAL s

nA . ]
an ke yr AL

sta maz‘wf /Dam

——

Q”/rr

"'779( value Mf Y at e 57“‘7’”‘?’”.’"@’”}
AL%s

= AT

s

QJ

77“ L.

/ 4t

/he wmbmed ;f/edm /umv‘wn 15

| L// Ar
and wn‘h s fm ’7‘77779"1.2

.

ar

or P/’#/'aj et
oX'=F |

- ana a_“vp/bi ot fhc
Eg . s

shown on ﬁw ﬁlfowm f’agel.i, |

(ret, 0=14) i

- The streamline Paﬁsma Thvoush

L 6-33




.68 |

Ceon?>

Theta(deg) Theta(rad) /L X y
10 0.175 2.857 2.814 0.496
20 0.349 1.950 1.832 0.667
30 0.524 1.655 1.347 0.778
40 0.698 1.331 1.020 0.856
50 0.873 1.191 0.765 0.912
60 1.047 1.100 0.550 0.952
70 1.222 1.042 0.356 0.979
80 1.396 1.010 0.175 0.995
90 1.571 1.000 0.000 1.000
120 ]Strearrlljne |
1.00 qL /
0.80 ——
 0.60 ——
0.40 ~
0.20
0.00 J— v : :
.00 050 100 150 200 250 3.00
Source_ X'

b8




6. 67

6.69 The two-dimensional velocity field for
an incompressible, Newtonian fluid is described
by the relationship
V = (12xy? — 6x3)i + (18x%y — 4yY)j
where the velocity has units of m/s when x and
y are in meters. Determine the stresses g,,, 0y,
and t,, at the point x = 0.5 m, y = 1.0 m if
pressure at this point is 6 kPa and the fluid is
glycerin at 20 °C. Show these stresses on a sketch.

G;x:: ~f+ 2-/14;—2 . (Eg. 6./25a)

Ty = =Pt 52 (£q. 6i25t)
- Qu U

[ (55 + %) (Eg. 61254)

For The given Velocity dLSh’iAuﬁ/bﬂ/ with X=0.5m and Y=lom:

| 2 2 2 2
s 12y =18 x* = /2 (lo) = /8 (6.5) = T5p

hl<

s au#xy = 24(6.5)(10) = 120

"‘1\

du
X
ou
24
U = 34xq= 3b(05)(lo) = /80
2X |
aég: = /8x%~1249" = /8 (05)"- /2 (1.0)* = = 750%

_ 3 _ E
Thus, +or  p= x> and K= L5025,

A B

3 -
O, = —6x/0 2 + 2 (150 Y2 ) (r50%) = ~5 1548
* R

O"gﬂ N éxlog;,—g- +2 (150 N;,,)(-’Ziogl'): - 6,02

/Z; = (150 ’:ni)(/zoé +18.03) = 450 R
6,02 4 Fa

y —Y

ys.0 Po
—| =
598 4R

X ‘v'i(—-

- b-385




' ¢. 70

6.70 Typical inviscid flow solutions for flow around
bodies indicate that the fluid flows smoothly around the
body, even for blunt bodies as shown in Video V6.4. How-
ever, experience reveals that due to the presence of viscos-
ity, the main flow may actually separate from the body cre-
ating a wake behind the body. As discussed in a later section
(Section 9.2.6), whether or not separation takes place de-
pends on the pressure gradient along the surface of the body,
as calculated by inviscid flow theory. If the pressure de- —_—
creases in the direction of flow (a favorable preﬁure gradi- —_—
ent), no separation will occur. However, if the pressure in- —_—

—

w———

creases in the direction of flow (an adverse pressure
gradient), separation may occur. For the circular cylinder of
Fig. P6.70 placed in a uniform stream with velocity, U, de- m FIGURE P6.770
termine an expression for the pressure gradient in the di-
rection flow on the surface of the cylinder. For what range
of values for the angle 8 will an adverse pressure gradient
occur?

F}’pm Eg . 116
be gt 267 (14 59)

1

Thus,

oF 4/02725//'79 cos 6 (1)
26 ;

Since an gdverse pressqre gradent  occars for @
pos, f1re OF /29/ [T follows Frem E"g,//) Thet O
Llls 1 The rame of T ° Sfor anm adverse
pressure  gradsenz This range Corvespnds o e
Year half of The cylinder. | |

o
—

(A

680
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6.71  For a two-dimensional i
flow in the x—y plane show that the

ncompressible
z component’

of the vorticity, {,, varies in accordance with the

" equation

DL _ o
Dt

What is the physical interpretation

tion for a nonviscous fluid? Hint:

transport equation can be derived

vier-Stokes equations by differentia

{

inating the pressure between Egs.

6.127b.

For two- dimensional £

/O

and E'z, 6.127b  pecluces

QU

£ 5z
D, FHeventiate

resjoecf fo X

2
2 X

QU p
52t 7 75

EZ,II) L
and sul

+ U —

)u
35
v
2)("

QU U
ot "'“ax

£[3

<[3(3

By definiton (see £3.
39 = QU*

. T X

-f-

[Ce-wri te

o QY QU
2 L ox 9y

?
“Qx

i

(if-éﬁ

of this equa-
This vorticity
from the Na-
ting and elim-
6.127a and

ow  with w=o

)

_éo
U‘) .._E f/agyi-/u

T Veslaeci to Y and Eg.(2 with
=tmci Ei (1) +prom Eztz) 4o obtain

37-

"fj )'~

6.17)

Eg. 6.1274 veducs to
) (1)

(z)

32
T oy

o2u

2
2 x>

n

sf g e p

ot LY
x g™

i

73 U
22 + 14
5)(

)

+‘l/‘au'

2
3y

Qtu

o> z)

Eg,/:?) fo obtan

(%)

ont)
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6.7/ (cm‘%)
Since each ferm in ‘pqrm?‘/?es/'s m Eg. %) s f.e,
[t follows That
9*@- ua_f?.'-;-v'é;._&: /a(ézf;+ fz) (5)
P 7 X Ixz
The left side of Eg.(5) Can be expressed as (See Eg,‘f.s)
Q& Where Tue @/oemévr DC ) s The material
Dt Dt

devivative . The right

Expressed 4s

- V%
7Ua T 53,/5}

Jo

D%
t

where 2 =/c//;

-
—

hand side of E,?g,(S‘) Can be

Can be wWriten as

v 7f

Fov a nenviscous +luid ,1v/=0

A
D&
Thus, for

=0

4 two-dimensional Llw of an

, @nd in ThG Case

ineompress;ble 2

onviscous »F/w'a/, “he Change 1w The Vori‘ﬁ:/'*g of a

Fluid particle as 1t
K3 7?%0.

moves Through The Flow Feld

6-83




6.72

6.72  The velocity of a fluid particle moving
along a horizontal streamline that coincides with
the x axis in a plane, two-dimensional incom-
pressible flow field was experimentally found to
be described by the equation u = x2. Along this
streamline determine an expression for: (a) the
rate of change of the v-component of velocity with
respect to y; (b) the acceleration of the particle;
" and (c) the pressure gradient in the x direction.
The fluid is Newtonian.

(a) From The Canin;w:fg egua.élo‘nj

Qu _ v -
2x T 3y~ °
So That wi?h w=x*%
QU . _ou . _. -
2y - X " = ada ‘)

Also, Eg 1) can be integratest with vespect do y o obtaii

fcl'l/'-' f—Zx.c/g

4= —2xy + Fix)

Since The X-axis is a Stveam/[ine
Thevefore F(x)zo so That

or

, V=0 a/onf, This axis and

V- = —2XYy
b
) ags wd ev e NG 5 (220)0) = 26
2
Qo 2 = (x¥)(zg) + (~2xy)[-2) = 2Xy
Hlong X-axis | y=o and Therepre 4y=0. Thus,
—_— 3D ;
a = X L

.
——y

c) From Ez'?' 6./27¢ (witn j,(=o);

A ) Y W L
a, ==L 2L+ £ (2 2F
x - pax Pl 3

2x’= A+ & (2+0)




6. 73

U
6.73  Two horizontal, infinite, parallel plates are spaced _,.ﬁ_,.,__,..,'__:g’,_.m
a distance b apart. A viscous liquid is contained between the T T
plates. The bottom plate is fixed and the upper plate moves
parallel to the bottom plate with a velocity U. Because of b — u
the no-slip boundary condition (see Video V6.5), the liquid
motion is caused by the liquid being dragged along by the 3
moving boundary. There is no pressure gradient in the di- _L ‘
rection of flow. Note that this is a so-called simple Couette Y A G AR i v i v aar i el 4

flow discussed in Section 6.9.2. (a) Start with the Navier—
Stokes equations and determine the velocity distribution be-
tween the plates. (b) Determine an expression for the
flowrate passing between the plates (for a unit width). Ex-
press your answer in terms of b and U.

;-/'Xed P)a:ie

(a) For 5feaa’g 7ﬂ/au w}‘/lﬁ V=r=0 [t Follows That The
Naviey- Stokes Lgu otions reduce 1o (1h directon of flow)

o=— £+ p (i;‘:) (Ey. 6.129)

7];4/5/ Sor Jtvo Pressuve gm//é”z

P
5ys =

Seo 777¢

= ¢, 9+ <,
At’ g:o w=p ahnd N 7[0//0ws ﬁqat C,=0. jj'm,'/ak/zj)
/ ;o _U_’
at yz-é w=U and * = %
'Mereére/ 198
u=1pJ

o ——

s
U U y?
(4) ‘g:/}au "'zlz%:’; z

J
where % /5 The f/owmi'e per unit widTh .

bl

- —
-

Z

P —————

-]
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6. TY

(L)

Since L2

and

1+ follows That

and Theve fore

6.74  Oil (SAE 30) at 15.6 °C flows steadily between fixed,
horizontal, parallel plates. The pressure drop per unit length
along the channel is 20 kPa/m, and the distance between the
plates is 4mm. The flow is laminar. Determine: (a) the volume
rate of flow (per meter of width), (b) the magnitude and direc-
tion of the shearing stress acting on the bottom plate, and (c)
the velocity along the centerline of the channel.

_2474p
?'E,”u ya

(EZ' 6.136)

N

-3 NS A 3
- Ymm _ = O — ‘ = —
—g- ‘1;.—' = 2X10 /m)/ll(_ 38 i) and ,QE 20 X/0 3 )

23 \3, 3
9 = 2 (2x16m) (20 x 10 -ﬂ—;—v-,.
3 (635 &E)

zj:/l[%*%{)

w<au 5k (y=h)
rso

2 2L -
R ALY A

Ty = £ (9)

m

-4 2
2,91 xjp M

S

( Eg 61254)

(Bg. 6.13¢)

At The éo#om ,D/afe) Y '-'"49. and Since 2%@ =~ %f)

(c)

J

= 40;2

T = éjﬁ[-[{) = (zo xlo3ﬂ )(leo'sm)

N acﬁinj in The direction of £low

U = V

g
—

(Ez_ 6.138)

3
ma X <L

3

p B

"
(@ )~_§ (2.31 xIo —3’”11)
zhl 2 2y zxiom)

S

= 0, 105 ™

7
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675

6.75 Two fixed, horizontal, parallel plates are spaced (.4 in.
8§ X 107 1b- s/f1%, SG = 0.9)
flows between the plates with a mean velocity of 0.5 ft/s. The
flow is laminar. Determine the pressure drop per unit length in
the direction of flow. What is the maximum velocity in the

apart. A viscous liquid (u =

channel?

3 (9x10° %)(&5%)

(Ez_ 6./37)

— = lf3.zlé (e
X 4 /o.z Iho\ 2 , ;tl'w #
| /12 {8 )
£t

= D
Umax = V (EZ £.138)

- 3 - F+ _ £+

"‘5_("’?)“0’75
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6. 76

6.7 A layer of viscous liquid of constant|
thickness (no velocity perpendicular to plat()
flows steadily down an infinite, inclined plane.:
Determine, by means of the Navier-Stokes equa-‘j
tions, the relationship between the thickness of
the layer and the discharge per unit width. The
flow is laminar, and assume air resistance is neg-
ligible so that the shearing stress at the free ,mr-‘
face is zero.

ol sind

WiTh The coordinate qu#fm shown 1n The [} ure
vso, wo, and Fom The Continuity egaa,iwsw %‘5‘- =o . Thus,

From he - component m‘ The WNavier -Stokes eguations (£g.6./272)

0:—9)‘ _,,/0; sind +/44 ;;:. (r)

Also, since There is a Free surface, There c:mmmf be a pressare
7md/ent th The X- d/rec;‘w» So ot 2P - qud Ee (1)
Cqn be wriHen as | ax 5

d24 = — P2 s d
Lnteqretio ol ‘/.72' g
ntegretion yields

"5‘3‘ il @f sind )y + €, 2

Since The SIteﬂr/hj stress
Ju _ v

Loy (557 2x
e?ua/s ’7??‘0 at The Free Suvface [3 L) it follows That

%5- =~ at y =R
]
So That 7%6 constant 1n 53.12) ’s
CI = /gu'} s
_Z'_'h/(’fmﬁoa of 5'2 (2) j/u’-*/ds
ﬁag S/na/)-—' +/£;Smal)j +C
Since wu=o at g=o, /'t Follows 7714£ C, =0, and There doye

u= % sine (Ry- %) Y
Thc Flowrate Per amz‘: width cean be expressed as % < / wdy
o

So That 3
/ L& sind (£ —iz)c/j = pg-ﬁ s el
2. 3/(‘
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.77

Direction of flow

6.77 A viscous, incompressible fluid flows be-|
" tween the two infinite, vertical, parallel plates of /
Fig. P6.1]. Determine, by use of the Navier—
Stokes equations, an expression for the pressure P
gradient in the direction of flow. Express your

answer in terms of the mean velocity. Assqme
that the flow is laminar, steady, and uniform.

AU

[

FIGURE P6.77

With The emordinate system shown w=o,w =0 and From The

continurty ezaabo’n OV =p. Thus from The g~ component
29 ) J .

of The Naviey-Stokes ~€ja,z7¢zaﬂ.s (Ez, 6./276)/ wiTh ga =-4,

- —92P _ d?v (1

Simce The pressure is not a fanction of x , Ez.0) can
be written as

dir s L
IX*
(heve P = 32;-’ +09 ) and Inteqgrated 4o obtarn
Hw/?/ Symmetr Q—:k £ xX= That €, =0. Integmiso,
of Ej.(yz) y}e/9¢< 72k ° e / Jhon
_ L x2C
v g g + G, |
Since at X-“.t%.)‘zr:a it Follows That C’z-_- —;@(—ﬁz)
and There fore P . .
LAry (/A-’ —% )

The Fflowrate per unit width 1 The z-direchon can be -expressed as

* 4
S— ‘_;P z 3
Z:fvdx -/.__ (x1h)dx = ..351—';_&1":

777”5/ with V. (mean velocity ) qiven by The ezud:zoh

g _ _ 1 £4°
V= 257773 &

¥ Follouss That

1'46"7‘/'




6.78

6.78 A fluid of density p flows steadily down-
ward between the two vertical infinite, parallel
plates shown in the figure for Problem 6.77. The
flow is fully developed and laminar, Make use of
the Navier—Stokes equation to determine the re-
lationship between the discharge and the other
parameters involved, for the case in which the
change in pressure along the channel is zero.

{

See solution For Problem 6.83 4o obtain
_ a2 PA
5= 73 R
where Z /s The discharmpe per wumt widlh  and
P - ;1;1 +P4 T Aus

~

Lepge- 3 4L
opr

R
For 2L =o

3
?: —Bz'ﬂ-z-’—é—

/ Mode: The neym‘/‘re 517}1 indicates That The divection of Flow
Must be downward +o create a 79;»0 pressure jrac//eht..)
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6.79  Due to the no-slip condition, as a solid is pulled out
of a viscous liquid some of the hquxd is also pulled along as
described in Examplle 6.9 and shown in Viden V6.5, Based on
the results given in Example 6.9, show on a dimensionless plot
the velocity distribution in the fluid film (v/V, vs. x/h) when the
* average film velocity, V, is 10% of the belt| velocity, V;.
From Exarmple ©.9, The avepage velocity 13 given by The :e(fmhou,
V bo —*/1 /)
Wit The Ve/ocn‘y disti bution LT
! B Iz
| e L Thxot 4
£ V=01V,  tnen frem Eg. ()
z H
B a Vo= Vo = ZF
34
2 L
or V= b’h o
Vo == (3)
7z |
Zn dzmengmn/eg; »Form ,E'Z [?—) becomes
7-‘ )(..z. 7x.f' e
VD :/A [ i
/‘ VP')) E ? (3)
)1 ;
xR,
Va‘
and £9. (4) can be wr Hen as L |
v 2 | X |
Z = 3s(F) - 2705 )+ (s)
A plot of The t/e/ou+11 distvibation is shown below.
~xh - vNo ' o TR e
0 1.000
0.1 0.744 1.500
0.2 0.514
0.3 0.312 1.000 3
0.4 0.136 2 o500 +—TF
0.5 -0.013 >
06  -0.134 0000
0.7 -0.229 -0.500 - q
0.8 -0.296 0 0.5 1
0.9 -0.337
1 -0.350 X
®
Calculated from
Eq. (5)
b-9¢




6. 50

- 6.80 An incompressible, viscous fluid
placed between horizontal, infinite, paral

ities, U, and U,, as shown. The pressure gradie
in the x direction is zero and the only body for
is due to the fluid weight. Use the Navier-Stok
equations to derive an expression for the veloc]

distribution between the plates. Assume lamin
flow.

oy 7ne slaeC/./}E;c/ Cond.

lel
plates as is shown in Fig. P6.80. The two plat
move in opposite directions with constant veloc-

is
es

nt
ce
€s
ty
ar

_ FIGURE P6.80

N S = = é.f" =
HLmAS) v=0, w—-o} 52 =% and afx 9,

So  Thet The Jc—aﬂm,ooﬂpll/: of The Navier -Stokes Pjaa.é/o'n.s
(E%‘ b, /272) reduces +to
d?u .,
do2 %)
Im‘fymémb ot~ Eg.1) jr/é/:ls
w=Cyr C, cz)
o y=o, 14_:—-7')2'( and Therefore from Eg.(2)
¢, -0,
F-;‘,. g: é) 5(.:—[}, So That
D;= CI; b —-D;_
oy - —U;#-Z"jz
¢, = L2
Thus
’ U +Ui |
a=( /A 2—)57 "Uz.

497
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6.8

fluids having the same densities but different v
cosities are contained between two infinite, he
izontal, parallel plates (Fig. P6.8J
.plate is fixed and the upper plate moves with
constant velocity U. Determine the velocity at t
interface. Express your answer in terms of U, ,,
and u,. The motion of the fluid is caused entirely
by the movement of the upper plate; that is, there -
is no pressure gradient in the x direction. T
fluid velocity and shearing stress is continuous
across the interface between the two fluids. A
sume laminar flow.

Two immiscible, incompressible, visco

For The spec 1hed Conditions ,

hat The x- tomponent of

OT-
. The bottom

he

he

us

18-

a

Fixed
“ plate

NOLLLLL LI L Ll 22T

~ FIGURE P6.8 |

\S-

= = éf-,_ =
V=0, W oja“dfx.o SO

the Navier- Sbke.s ffaafwus ( £g. b./27a)

for e/Ther The wpper or lower lager reduces to
dJd2u
431—- =0 )
Lnteqration of Eg. (1) yelds
u=~Ay +8
Which gives The velocity distribution 1w either lager.
Zn 7he wpper /ayer at- 51'-2/} u=U 50 7That
B/ = U - AL/ (z4)
wWhere The subscrpt | refers 4o The upper /ayer.
For The lower layer ot y=o, u=o So That
B, <o
Where The subseript 2 veders 4o The lower ]%w. Thus,
1/(, = AI (j-Zﬁ)-]—U
and ;
U, = Az 9
/4f _17::%_ ) U, = U, So  That
A, (4-24)+ 0T Az A
or U
A, = — A+ 5 , €z)
2 ! h lcont )
693




6.8/

( Con? )

Since The velocrty clistribution 15 linear 1w each layer

‘/’he 5/194;«/)17 J?LIQSS
Ly = p

1s  Constant Th roughou +

v - du
e ) g
each layer, For The upper lager

T ph

and /Or fhe /pmr /awr

7 fu he
At the interface 27-“2';_ So That
/("/ Al =%LA‘
or A = /_483'
A2 A
Substituton of Eg .(3) into Eg. (2) g/'e/i:
o . M2 U
Armg bt g
or U
/1 s
2 | + /u"//“':
Thus, velocity of The interface i
_ v___
uz(gz‘g) = A‘Z’Z - l-f-/f‘_’-_
M

(3

--19




6. 52 Ceont)

wJ y/o

1.17 0.1 1.2
1.8 0.2
133 0.3 14

1.32 0.4 08 B
1.25 05 ' T~

1.12 0.6 0.6
0.93 0.7

068 08 04

037 09 0.2 ——

0 1 ed

\ | Qo 0.5 . 15

Calculated
from Eq. (2) wJ
with P =3.

™y

y/b

7o édcwﬁ‘crm:;’»? Lv/m’c 7"71{ mamm‘u:‘m" \V’;(’!IOCIHWOC_,LAV"/ |
cifterentiate £g.(2) and set efual 4o yevo. Thus,
dl) . _pfifdy- L] -4 =0
S ——— L ! , ' ,
A4y
mm wzﬁrif:,3’ “ | | :
o “w T, 8 N4 o,

a4l /o) . _ 3 ['5 (Z’ L \lv)] -3 %

cly R B |

1 -

g
-

4
=

b0l
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6.83

A viscous fluid (specific weight = 80 Ib/ft’; viscos- U =0.02 fts

ity = 0.03 Ib- s/ft?) is contained between two infinite, hori- e

zontal parallel plates as shown in Fig. P6.83. The fluid moves
between the plates under the action of a pressure gradient, and
the upper plate moves with a velocity / while the boitom plate
is fixed. A U-tube manometer connected between two points
along the bottom indicates a differential reading of 0.1 in. If the
upper plate moves with a velocity of 0.02 ft/s, at what distance
from the bottom plate does the maximum velocity in the gap
betwecn ihe two plates occur” Assume lammar ﬂow

Fixed
plate

y = 100 Ib/td

B FIGURE P6.83

= m’" {»j J-’ /ép .
“ FEMEYRS )(‘/32‘59) (£9. 6.140)

Maximum velocity /)] occur at distance Som W here %:

"ﬁmsg du C [ /2
4 T+ L (2)(2y-4)

aud '2’6” 4 =
n %5 o . o ,
Yo ""'@; * 2 o
For manometer (see ?‘f:gwe fo wqht?j ml"“ﬂ' —?2)
“F}-ﬁ-» K‘?ﬁ Ahwh’“g;éh-’ﬁ_ = ==
or “ ~t ¥ ¥
F-p <0y, - )k Yl o
, : 7 7
= (1pp L~ gp 1 _9.,}___,., lb /W/
( £t3 £3 )(az% =01 ”qpt?- 8¢ 2
Al b
o _sp, boh . ok . el
T X Ta ?@4 3
2 )
+&
Thus Fﬁ”ﬁm L@
s [0 in.
{’Qﬂﬁi ,_)4/0 OZLE) iz fne
%m«x — y + Te
. ¥
;—;_——7;——4}{ 0. 334 w} Z

= L0632 £ (’52“1 = 4759 n.

é_-!eaz;




6. 34

Shaft

6.34 A vertical shaft passes through a bearing and is lubri- — ~—75 mm
cated with an oil having a viscosity of 0.2 N-s/m? as shown in
Fig. P6.8% Assume that the flow characteristics in the gap be-
tween the shaft and bearing are the same as those for laminar
flow between infinite parallel plates with zero pressure gradient
in the direction of flow. Estimate the torque required to over-
come viscous resistance when the shaft is turning at 8 rev/min.

Bearing

— L~——O.25 mm

o~
m FIGURE P6.8Y4

The ‘ltorgue due +o force dF achug
on o diffevential aved, dh=V; Lde,
is (see Hfigure at vight)

dT = v dF = v* T/ ds

L
wheve T is the sheaving stvess, Thus,

e
ﬂ‘: VL-ZT)? jde = z‘lTrLozT/Q (+)
o

L~ shaft lengtn

In “he gap,
w= U
where U<r.w and b is tue gap width . Also,

L
Jpdu L uU
/t‘/* dy ’%‘
Thus, from Eg.1)
3

Teamipd) L= amipd

0. lbOm

- Q.015 o2 rev \fam Vad ﬁ"_'.’") :
2T ( m«) 0.2 /{XD mi»X rev Abos (o.zs‘xlognn)

= O. 355 Nerm L

(E%, b.14z)

o-|ec

1

l=103




b.85

6.85 A viscous fluid is contained between two long con-
centric cylinders. The geometry of the system is such that the
flow between the cylinders is approximately the same as the
laminar flow between two infinite parallel plates. (a) Determine
an expression for the torque required to rotate the outer cylin-
der with an angular velocity w. The inner cylinder is fixed. Ex-
press your answer in terms of the geometry of the system, the
viscosity of the fluid, and the angular velocity. (b) For a small
rectangular element located at the fixed wall determine an ex-
pression for the rate of angular deformation of this element.
(See Video V6.1 and Fig. P6.9.)

(2) The forgae Which musi  be aPPhéd +
force due + The Sheaving stve

dr=dF = Y, (T
So ‘huvf 2 T
Tritefdo -
In 7he gap y
w= Ug
Since, du . pU
/t‘/bt dy &
and  b=r-r, U hw

Con ,i )

¥/

T

~ shedarmg stress

outer 01hn'dt?r Jo overcome T

ss 15 (see -flg'we)

n9d6) = ;" e de

2
()

(Bg. ¢.142)

(see Qéuvﬂ), it Lo llows

3
= arh pwd
b, =1,

(- low




C.55  leont)

) Fem Ez Lle

° _ QU L QU

Br e Linear ,d&é’fﬁ[buiv‘m’n |

~—y
- —

% Tt

o
24

dna = ’ =0
b

7%

717< néya.h'.« 51{7'” Indicates That e ‘,oném'e/ ’

Yunt angle shown mFigPL?é is lhcreasing.
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6.56%

g iven below.
y, m u, mis 0.005
0 0
0.0005 0.1975
0.0010  0.3556 0.004
0.0015 0.4742
0.0020 0.5534
0.0025 0.5931 0.003
0.0030 0.5934 E
0.0035 0.5542 -
0.0040 0.4756 0.002
0.0045 0.3575
0.0050 0.2000
v
Calculated 0001
from Eq. (1)
0

*6.96  Oil (SAE 30) flows between parallel plates spaced
5 mm apart. The bottom plate is fixed but the upper plate
moves with a velocity of .2 m/s in the positive x direction.
The pressure gradient is 60 kPa/m, and is negative. Com-
pute the velocity at various points across the channel and
show the results on a plot. Assume laminar flow.

The veloc/ty distribubon 15 given by The egustaon

ws Z/-f— * ;‘L (%) by) (£g. 6.140)
and for The gwén data,

(0.2 ‘3@) / 3
: )+ — - )| 42
(0.005m ) ? cz[&.arP/_E) ( onm/ma)[ﬁ - /0’005"")5]
me
so That -
w= toy+ 7.4’5’x/o"‘/0.ppsg—gz) (1)

iy w 1yh /s when gy o m m,
Tobulated data and a plot oF The dato are

~
»

/
"’/
0 0.1 0.2 0.3 0.4 0.5 0.6
u (m/s)

6-1ob
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6.8 '7 Consider a steady, lamma

§

r ﬂow through

“a straight horizontal tube having the constant el-
liptical cross section given by the equatnon

x2 2
2.z

p - L

The streamlines are all straight and parallel. In-
vestigate the possibility of using an equation for

the z component of velocity of the

x2

a2

v=a

form

]
b2

as an exact solution to this problem. With this:
velocity distribution what is the reEalnonshlp be-

tween the pressure gradient along
the volume flowrate through the tul

From e descripbion of The problem, u=o, v=o, . =0, w# £2)

and The Continuity equatv;

the tube and

be?

w mdicates et dw=p (T These

v , o0z .
Conditiwons The Z-Component of The Naviéy-Stokes ejazzf/o/a ( Eg 6.127¢)
veduces +s op (!}, >0
2z "M (oxz T 5ge 4= (1)
Due to the no-shp boundary condrtion , W =o on The
ell;ptice/ boundary
R
_)—6_ -+ ..Z. = /
asz b*

Thus) The pr‘o/Ja.sec/ veloc

Condition Since on 7Thne
. _XT_ oy,

LJ‘" A 2“1 —;.2 /
Thi's  vesult 1ndicates Hat

Can be used as a Solu
distvibybion 117e Eg. (7
The pressuve gradent, %

/

/y A5t butiow  satisd es 7his

boundary

A (e ) =4 [1- o0

The proposed velocity distri bution

tiou. Substitution of The veloci¥y

qIves The Ve/a{/‘g‘m*//gp be weein
and e velocidy, 5//4’((,)

)
QW . _ 2 2w _ _zA
oIxX * 2? 2y b
't follows That
L (2)
= —'ZA/( a? +A")
(cont)
~{o07




G. 87

The volume -F/awm{e Q ‘fhra
‘he tube 15 51U€n by ’ﬂm Qﬁuzbw

Q-

( Con't )

[wa
4 veée

uqh

-+

-

a
2 S
=l/-Ao (/—%‘«Ly—;_)dxc/g
b ° a l—.'é’.:
_ X «{Z-zx b
o4 °
_ |/_a‘ s
= ‘fAfO[@ = (0
b 134_
= A4 (l-— .‘i’.\ dy = __/3_.
3, Lz / 3
. 2@
A= Ta b
EZ"Z)
é’.ﬁ--‘-‘* 17‘ O(-_li+—iz>
2% mab a b

é6-10%
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.93

6.88 A fluid is initially at rest

horizontal, infinite, parallel plates.

pressure gradient in a direction p

between two
A constant
arallel to the

plates is suddenly applied and the fluid starts to
move. Determine the appropriate differential
equation(s), initial condition, and boundary con-
ditions that govern this type of flow. You need

not solve the equation(s).

D/ ffeventia] e Fua tions a
&.13)  except Thet fiﬁ #

re 7Twe

7711/5, Ez, 6./129 rnust include

w :
%Z"J and The Foverning

Sqme 4s EZS' é./27/ 6./36, ana

O (since The Flow 15 ansteady ).

e Jocal acceleva 210 ffrﬂ;

d /K’VFM//(/ €f4/((Z‘Jm)a are :

o J -
( x- divection) / ;—Z‘f i -A—t /‘ ¢ t (wrth ;fz"ﬂ”“ﬁ”t)

/j—- divection ) o= - AP f’oz
(Z- divection ) o4 — @_E
' o 2
Tnitial Condition : k=0 for %=o _16)" al y .
Boundary conditions : u=o tfor y=t4f for tZo.
té""/o?




6.89

o

6.89  Itis known that the velocity distribut
laminar flow in circular tubes (either horizont

on for steady,
al or vertical)

is parabolic. (See Video ¥6.6.) Consider a 10-mm diameter

horizontal tube through which ethyl alcohol is
a steady mean velocity 0.15 m/s. (a) Would y
velocity distribution to be parabolic in this ¢
(b) What is the pressure drop per unit length aj

flowing with
ou expect the
ase? Explain.
long the tube?

(a) Check Keynolds pumber b Jettrmne 1£ FHow is Jaminar:

« A
Re = /0};{ R)=

T/w;/ The Flow 15
would be

(787 2% )(0.15 2 )(0.000.m)

Caxs I = 995 < oo

Jamnar and velocty  cister buton

Darabolic . Yes.

() Since The Hlow s laminar

/QZ

—

V=
NYe) '/71a:1f
ap

L

——
——

57

é/ﬁ-l'/
Rz

4p

7 (£ Cise)

8 (119 X167 %;)(ﬂ./s‘—?)

(200m)>

6-110




6. 70

690 A simple flow system to be used for steady flow
tests consists of a constant head tank connected to a length of
4-mm-diameter tubing as shown in Fig. P6.90. The liquid has
a viscosity of 0.015 N - s/m?, a density of 1200 kg/m’, and dis-
charges into the atmosphere with a mean velocity of 2 m/s. (a)
Verify that the flow will be laminar. (b) The flow is fully de-
veloped in the last 3 m of the tube. What is the pressure at the
pressure gage? (c) What is the magnitude of the wall shearing
stress, 7., in the fully developed region?

(a) Check /?ef//m/a/s amber to determine K How s
I@ - /a v (2R) _ (7200 %&3 ) (2 %)/o.ooeém)
e = ! By

Pressure
gage

Diameter = 4 mm

®m FIGURE P6.90

/4m //.mr .

= G40

- 0.015 V-5

/72

Since The /@7/70//5 Number K well below Rioo The How 1 )tIm:hqr,

by Br laminar Flow,
_ ﬁz‘_zlf (EZ- 6.152)
V= gr X
Since A/ﬂ ff < f;’*tD [see /lj'ure)
_SA Vf_ g (o.015 A,,%)/Z%")[sm) - I1504R
/ 2 ' ——
Lo0¥ \*
R (0 20 m\)
- oV |, oz )
¢) ’Z;i__/,.. 3.5'.'1_5?) (EZ b 126 F
For fu//g developed pipe Flow, Vzo0, So That
oYL
Tezf 35
Also k2 (Cr €./5%)
" G Y1 -(7)] 7.
and with  Vpe, = —?.V/ Wheve V&5 The mean velocity
2r
/Z;*z»z ‘2V/‘ (" 72'11—)
' a =R m .
Ths, ot the ”):vx_«)l_ k_ y (2% )(o0.015 %) co.0 1,
\(Trz>w./1 '\ R (°~020‘*,m) —
T o 117
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6.91

#=060N -s/m

A highl 2y
) i

viscous Newtonian
is contained in a lo

liquid (p =

1’300 kg/ m’; .
ng, vertical, 150-mm di- =~

ameter tube. Initially the liquid is at rest but when a valve at

the bottom of the tube is opened floy

v commences. Although

the flow is slowly changing with time, at any instant the ve-

locity distribution is parabolic, that is,

the flow is quasi-steady.

(See Video V6.6.) Some measurements show that the average
velocity, V, is changing in accordance with the equation

V =0.1t, with Vin m/s when ¢ is in

seconds. (a) Show on a

plot the velocxty distribution (v, vs. r)att = 2 s, where v, is the

velocity and r is the radius from the ce

lfy that the flow i is lammar at thlS mstant

nter of the tube. (b) Ver- - do

I

T

o |

Yo

< !

6.

b << 2.1

p N5
M\—
o

(a) F;r pambo/:c velocity d/.sh:bm‘wn
| my\*
= - - (%) (£
T | _ |

Since Viupy =2V |
; W:‘ﬂl V"" O.H.' et = Zs and
R= ,/fﬁz"l'.k”‘”; = 76"owm Thus 1) become:
V=12 (é'_z 5 [’ ~ (0.075m)*
and 2
- _
V=oy (1=mert)
A ,o/o‘t‘ £ s Velac:"i"] distribation 13 shown
’ vz (m/s) r(m) ‘ ' ‘
0000  0.075
0.100 0.065 0.1
0185  0.055 0.08
0256  0.045 006
0313 0035 : ~NC
0356  0.025 0.04 N
0.384 0.015 0.02 ,
0.400 0 £ o
0.384  -0.015 = 00s
0356  -0.025 ‘ /
0313  -0.035 -0.04 i
0256  -0.045 0.06 o
0256  -0.045 008 =
0185  -0.055 o
0.100 -0.065 0.000 0.100 0.200 0.300 0.400 0.500
0000  -0.075 . ey

(0.150m)

( Flow is lamina)

. 6.15%)

(1

L4

below.

b liz
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6.92
6.92 (a) Show that for Poiseuiilé flow in a
tube of radius R the magnitude of the wall shear-
ing stress, t,,, can be obtained from the relation-
ship
4
I(Trz)walll = ;[ﬁR?Q—:’
for a Newtonian fluid of viscosity x. The volume
rate of flow is Q. (b) Determine the magnitude
of the wall shearing stress for a fluid having a
viscosity of 0.004 N-s/m? flowing with an average
velocity of 130 mm/s in a 2-mm-diameter tube.
. oV |z )
(a) 7;? /&-(ai_ "a—': (5] 6./2.‘7“)
For Ferseaille Hlow i a -éul’e} Y20, and There fore
20

Tra= o IF
S/;’l( e, B r 2]

%= %, [1-(3) (9. 6150
and ’V/;ne( =LY , wheve V 1& The mean velocity ) it follows
that oV; . _ AVF

dF k=
Thusj at The wall (f'r—ﬁ) )

(Te),., =~ 222
k2 tal / -
and with  QP= TRV
l (1 . hpQ
rz ) wall “7T' R3
.5
(b) ( ‘ b/ 4 (0.004 "—’—»,m:)[o.la’o’—‘“;)
T | = L -
r2) wall R
= 2,08 Fq
6-1/13
®




6.93

6.93  An incompressible, Newtonian fluid
flows steadily between two infinitely long, con-
centric cylmders as shown in Flg P643 . The
outer cylinder is fixed, but the inner cylinder
moves with a longitudinal velocity V, as shown
For what value of V, will the drag on the inner
cylinder be zero? Assume that the flow is laminar,

Fixed wall
@I(/I/I/I/III IIII I/IIIIIIII/IIII:.

axisymmetric, and fully developed.
FIG:URE P6‘?3
ﬁzaa bon 6.4 7 Which was Je’ue/a,ae;( for  Flow m Circalay fubes
applies 15 The onnu/qr reguwon. ThuS, ’
"’E“};«(az Fre ¢ dnr + ¢ (1)
14/‘1‘7‘7: éoum/drg eonditons | r=1t | V3 =0, and r=r., 1{;—'\/0)
1t follows That:
2
/a&)y‘ + ¢ dnp + G €2
2
\4:9;4‘(&2/‘7;*“,}”’1'*5; (3
Sub tract Ez,tz) Lrom Eg .(3) s obtan
i _)_f a2 2 h_’
Z (22 (h2-7; )+ ¢ Ln P
o
So wai /
2
. = V, ~ % 'ﬁ)(’?“
! Ln L
s
The dmj on The inner cylinder will be zevo 1F
(T ) ey, =0
Since. (BV”
) ~ = A
[k;_ /‘ 2z T ——;) (E;, 6.126 £)
and wih =, It Lollows That
T o o 2Ur
[}‘z'L s
(cont )
b~ 1y




6.93 (Cont)
D/‘Férenf/éée 55.(/) wilh reS/:eci- to v to obtan
JVie _ L [P ¢,
T:‘_ = 2u (‘M_ -t —
So That at r= /"
> ~ L () (n
( L (58 ) e
Tk&) /“ 2t oz /)t b
Fodn %
Thusl 1h ordey for The tdrag to be Zero,
_ L P 2
é_g);«‘.,_ \/b %[32—)[&""3) o
[}
Or

o ’7;a ( )[ v A _'”é, _ (’?'Z‘GZ)J

’

6~ 5




6.T4

6.94  An infinitely long, solid, vertical cy
der of radius R is located in an infinite mass

an incompressible fluid. Start with the Navier—

Stokes equation in the  direction and derive

expression for the velocity distribution for the
steady flow case in which the cylinder is rotating
ity
. You need not consider body forces. Assume

about a fixed axis with a constant angular veloc

that the flow is axisymmetric and the fluid is
rest at infinity.

For This £low 14'6’/6‘/) Y=o

in-

VY=o
of

an

at

Vz =0, and frem The coﬂﬁﬂ}zxi‘y €5wfm}/ ;

J
k) o dus
F 57 TF 38 T (Eg. ¢.35)
1t Aollows That Iy
_5792 =p (See A}urc or mz‘aﬁén,)
—/—/7&15) The MNaviev- Shokes egvamf/a'n i The O-divection (£3.6./1285)
Lor steady FHow reduces Fo
| .1 Ip L2/ b\ Y
ST 35 YA TF o "3,‘;) g
Duye to The Symmetry of 7he How,
2F -
That "
So a
L2 0l )- 22 =0
y oF ¥ e
or
2% Vs A
_ C < . Y% _
ar2: K ar P (1)
Since V, s 4 Functioy of only F o Eg. D can be
Chpressed oS agn 0/‘0///747/:9' d Aerenti/ qua ézp'”} aunel
Ve-writlen as
d?Vg d 2z
are " E/?(‘,?')’O (2)
Equation 12) can be /"1‘1‘@7/4/?:/ 4o yield
dr +
or
r 9’;—? V= G F (3)
(69/7,2 )
6- /16




6.94 (eont )

Egua tion (Z) Can be expressed as

d (FUz )
cl ¥

= ¢ r

and 4  second Integration 7/&/&

/_ng C//‘Z

- + G
or -
F ¢
Vo= —=z T F
As F—veo, V,—>0, (stnce  £lurd 15 at rest at mtmity)

So Tat C=o0. Thas,

v = 2

&  F
and Since at F=R, Vg = R, st Follows That %3/3247
and P

- GJI
Vg = ~—
i
6-117




6.95

6.95 A viscous fluid is contained between

angular velocity w. The inner cylinder is fixed
has a radius ;. Make use of the Navier—Stc
equations to obtain an exact solution for the
locity distribution in the gap. Assume that
flow in the gap is axisymmetric (neither velo

nor pressure are functions of angular position 6
Om-
ent.

within gap) and that there are no velocity ¢
ponents other than the tangential compon
The only body force is the weight.

|

|
|

The Ve/aci'f‘g distribution 1

eléua.tt'on -
Vo= =
(See solution +o  Proble

With e beundiry condr

two
infinitely long vertical concentric cylinders. The
outer cylinder has a radius r, and rotates with an
and
kes

+

ve-
the
city

The annulav space is given by The

Ca

[—-
m 6.9% for dewizzézoh.)

Fions =V, Vg =0, and

(/)

F=2r,, Vp=rhaow (see ﬁj'we for hota-'é/on), it follows
From Eg u) tht:
~e C/ }1:‘ o £—2:
e T F
Hhw= &G 4+ &
2 S
Th
er‘e’Qre) . oz
; c, = e
/ | — yzl
'%"L
and 2
c, s | W
* I‘_' rL.z
"yTO'z
So 'ﬁ'laﬂl—'
Fa z
- N - Ky
- X Fr- %)
o o
or 2
o e __[‘ Y
6 (- r’ =
(- %)
- 118




6. 96

6.96  For flow between concentric cylinders, with the outer
cylinder rotating at an angular velocity  and the inner cylin-
der fixed, it is commonly assumed that the tangential velocity
(vy) distribution in the gap between the cylinders is linear. Based
~ on the exact solution to this problem (see Pro;blem 6.95) the ve-
locity distribution in the gap is not linear. Fox"‘ an outer cylinder
with radius r, = 2.00 in. and an inner cylim;lt‘fl with radius r; =
|

1.80 in., show, with the aid of a plot, how the dimensionless
velocity distribution, ve/r,w, varies with the dimensionless ra-
dial position, r/r,, for the exact and approximate solutions.

For a //ne;cr Ve/oc;'-/-, destribution
vge (pe)(L20)

_— r‘L.

and iin nondimensionsl form
7% £ .

- }‘() }"3
D, | = re

D

( a/y»roa(zﬁde So/w-hén)

Ev The exact solution (see Problem 4. 95)

)

T

and 1h Nendimensions| Lorm
r

Va r

-~
-

on e 5/,'1713 cuvrve Shown.

},L

( (o
g I 7l W 7
o4 (|- !;:‘) ) 0

.

For V=180 in ana [y=200/n. some *Aa}u/d’lf’p/ Values aona
a jr‘a/oh are Shown below. Note That there & [itfle

ditference between The exact and ¢pprax/im£e Jb/uﬂrm' for 7‘hi;<
small gep widty . For all prachieal purpeses both =mlutions +fal

1.000
Linear | Exact
Yol | Volbw | I 0.980 -
0.000 0.000 0.900
0.125 0.131 0.913 -.30'960 4 |/
0.250 | 0.260 | 0.925 £ ono /
0.375 0.387 0.938 ‘
0.500 | 0512 | 0.050 0.920 |—s S
0.625 0.637 0.863
0.750 0.759 0.975 0.900
0.875 | 0.880 | 0.988 0.000 0.500
1.000 1.000 1.000

Ve I

1.000

()

(2)

b-/19




6.91

697 A viscous liquid (u = 0.0121b-s/f5, p =179
slugs/ft*) flows through the annul —Lr space between two hori-
zontal, fixed, concentric cyhnders‘ If the radius of the inner
cylinder is 1.5 in. and the radius of| the outer cylinder is 2.5 in.,
what is the pressure drop along the axis of the annulus per foot
when the volume flowrate is 0.14 ft*/s?

Check Reyﬂa/a’s number to determine 1f Flow is laminar:

- AV
Re /i—/;.—
Wheve Df: ,2,(/2-}2') and V= @
T (H*-h*)
Thus, o 20 @ 2 (1.7% 5/““)/0 1y -,ct-?)
¢ T (L+1.) 7 /0 0/2 /5 s )(Zsm +/5‘m)
/Z/ﬂ
= 3949 < 200 FE

Since The Reynolds number 15 well below Zioo The fhow 1's
laminar aund

T 4p

s By i)
So ﬁ‘at h'
o
4 . s
A Bt rfo (h2-g)”
7, Ie
r.

g (6.0/2 /fc—;-f_)(a. /4 -f—tj)ﬁr

. ‘/- N 25’” /;5'/}1’
(2.5'/2:) _ (LS'{»?.) [ 2 m) (/z m;)]
12 11y. 12/n.

Ft
QH 2.9 l.n
.5 1n.

I

|

33.1 :%z per ft




6.99 %

6.98 * Plot the velocity profile for

the fluid

fiowing in the annular space described j in Problem

P6.97.. Determine from the plot the

radiys at

which the maximum velocity occurs and compare
with the value predicted from Eq. 6.157.

The velocity distribation

n The annulas 15 given by e egucton

2 2
% / [P -+ ,é,,, -] (Eq. ¢.155)
f“ ) ° l’n "’ k ;
From Froblem (.97
2p. -8 - _asy L2
320 12 A8 4
Thus, wiTh je= 0.0/6 Ib-s/ft*, b= 1.5ih. and k= 2.5n.

1 Follows “That
/
(254 #o) Ry

C—

4 (0.014 &3 =

ey

’L/i_: — Yy [/"2—- 0.0
Where vz {h -Pé/.)‘ w;ﬁi

Tabylated data gnd a

£4) 4 (24)- zﬂjn——-

A 25 TH
g

' F
yak - o.0544 bn S — )
w L.

/o/ai‘ of The deta are 5/;'}” Lelpw.

From These date 1t 15 seen Tat The maximum veloctly
+
oCUrs a /;n @ 25@5 £t
This value £orr‘espana’s 4 B value calculated 14;‘0/?7
E9. 6.157 !
g 7 r_y‘ , } R lé ( 1( ) /5_ z 2-
bm = 0 ¢ = I = 0./65 £
l_ 200 L 2 25
ke /&
/
( Con t )

b-121




675"

(con?t)

v, (fi/s)
0.00
0.422
0.770
1.051
1.267
1.421
1.516
1.554
1.537
1.466
1.344
1.171
0.949
0.680
0.364
0.00

r(ft)

0.125
0.131
0.136
0.142
0.147
0.153
0.158
0.164
0.169
0.175
0.181
0.186
0.192
0.197
0.203
0.208

0.23 |

0.19 1
® 0174

0.15 1

021 %
|

b r—— c— o— — o

0.13 { 7,;.7/
X T

Maximum velocity
occurs at r = 0.165 ft

0.11 +
0.00

1.00 1.50

v, ftis

2.00

t-122




*6.997  As is shown by Eq. 6.150 the pressure grad
for laminar flow through a tube of constant radius is gi
by the expression:

8ug

———

wR*

9P _
0z

For a tube whose radius is changing very gradually, such as

the one illustrated in Fig. P6.99, it is expected that this eg
tion can be used to approximate the pressure change along
tube if the actual radius, R(z), is used at each cross section.

following measurements were obtained along a particular t

¢ |0 ]01 ]0.2 ]0.3 |04 ]0.5]0.6 |07 [0.8 |09 |

lent
ven

Compare the pressure drop over the length £ for this nonuni-
form tube with one having the constant radius R,. Hint: To
solve this problem you will need to numerically integrate
the equation for the pressure gradient given above.

Jua-
the
The
hbe.

® FIGURE P6.49
1.0

RevR, 110010731 0.6710.651 0.6710.801 0.801 0.7110.731 0.771

From The €gua tion gquen

%
[

% o
Since P-£=4F (The
24

ap- %

or, wiTh 2% 2/ ana o

4p-

Fora. Constant Vac//aé
Ap=
b,

So That

AP (nonum for

4
L@

77")?“'

1.00

Ly The pressure gmd/mt

pressure drep) ;t  follows That

[ﬂ [ee )]_fdi |

et = R/R,,
//e*) dz*
tube (see £3. 6.5 ))

gm0 4
E, *

U %ﬂée)

A,b (Uﬂ:/'orm

This inteqm/! cgn be
Us/ing THe +rape oo

‘—-MZ @L-"g&-fl)(
Y (e*) Tt and

(con)

f//e*) Jz*

tube)

evaluated nymerically
lal rule, L.€.,

/
% "IL') w here

tti

1 2%

b-123




6.79 * (Con't )

z/t R/Ro  (R/Ro)*-4
0.0 1.00 1.00
0.1 0.73 3.52
0.2 0.67 4.96
0.3 0.65 5.60
0.4 0.67 4.96
0.5 0.80 2.44
0.6 0.80 2.44
0.7 0.71 3.94
0.8 0.73 3.52
0.9 0.77 2.84

1.0 1.00 1.00
|

|

‘ e
Us “he tabulated deta aéal/e :
d/:;fa,(/n'm%c Vaelue of The /nv‘-e;nr/ /5 5’.5‘2.

Thus,
A}: (ﬂonh!/ﬂz/orm Zl'ﬂée) . 352
Ap (uniforrm Lube) T

L-124




6./00

6.100  Show how Eq. 6.155 is obtained. |

Frem Eg. &.147

AVZTINE (£g. 6.147
vi 7 (52 P2+ k7 G 2. 6.147)
For fow 1n an annulus y Vz{ =0 aft r=8  and

V=0 at F= v, 774//_5 om Eg. 6./#7
—L(éﬁ /.32“-/- C;/nl;‘ + G

N

o

2

o= n

+ ¢ lnkt +6

‘}‘a dz-)
ana  splving r €

g na we have

4
% (38) (51
In (7';‘-:)

C'/—

()

c,_:“"l,;‘i /’3 Vz‘”)/nh;) B

;.\»

Substitutioy of Ezs. (D) gna (2) into Eg. 6147 7/;/0

?“aznk ""ff)’ T»f]

h

vz

‘.

Which o5  1he desived Cquation [Eg.é./:?'ﬁ‘).

é»""/25"




6. /0/

6.101 A wire of diameter d is stretched alon

of a pipe of diameter D. For a given pressur
length of pipe, by how much does the preser

g the centerline

e drop per unit
nce of the wire

reducetheﬁowratelf(a)d/D-—01 (b)d/D§ 0.01?
The  volume flowrate 45 710 n 447 Z:Z-é-/fé
A C 2._ /‘l 2 —-~
- 7?7?/_&’3 [}34/-_@6 B (y );) ] (Eg. 6 15%)
/n(.,;_z') -
Which Can be written 15
_ W‘/f"AP [/ ]
GD- 5/ ﬂ (1)
/“ / "‘c)
_ . ¥,
‘S/hfc %: % , E7_ () Can alse de writen as
774 FAp A
¢: Xi‘/ﬂ 5/ [ ( )]g (z)
| ' 1/4(——-)
/Vo/e ﬂmé 74»' -/%/ =0 [fm wt’re)
@ - 7 %éZ.D
gml
Which Corresponds 7o Porsew lles Law [Eé’ 6./57)
@) By 4=, /, Eg.2 gwes r ﬂz
# — (0.
p= T2 2 {1 (o)t L6 Z: 0.57¢
JuL [n(o.1)
Thus, for The same Ap The Flowrate s reduced by
% Veduckien 1i = (J— 0.5T4)x 1m0 = 424 %
(6) &h/'/ﬂr/y/ Sor —g 70.&/]5-?'(2) 9)ves
% , _ 2] *
Q= T5% 2P} _ (o), (= o)~ p7e3
suk In (6.01)
A
" % vecluctioy in () = (J- 0783 X 100 < ;2(/.7"/0
/Volft ﬁta-/- 77/6 Vesence 07[ Clhn a I/€V7 5ma// wrre a/o;/;a
The. tube Ceuter)ine HAas a __ 5/%0; hlowl efffect on The f/au,dc.
¢~126
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6.102 (See “Some hurricane facts,” Section 6.5.3.) Consider
a category five hurricane that has a maximum wind speed of 160
mph at the eye wall, 10 miles from the center of the hurricane.
If the flow in the hurricane outside of the hurricane’s eye is ap-
proximated as a free vortex, determine the wind speeds at loca-
tions 20 mi, 30 mi, and 40 mi from the center of the storm.

br free vortex
Vo= K (£q.0.8%)

53,3 mph

l,‘
Thus, at eye wall
lbomph = K
/0/”!(,
Se thet
K= (’kOMph )(IO wmi)
and
Ve = (//Lormph)(/o m )
For, (0 .
) bompn) (10 m.)
Yé:'- ZOM(, V‘B‘: ?Zlm.'. L = 80,0 /mph
' (ko mpn) (10 ms) _
VB"' 30 mc i1/-@; %o foms)
e = o me r (1bo mph) (16 m<)
Yo me
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6.103

6.103 (See “A sailing ship without sails,” Section 6.6.3.) De-
termine the magnitde of the total force developed by the two
rotating cylinders on the Flettner “rotor-ship™ due to the Mag-
nus effect. Assume a wind speedi relative to the ship of (a) 10
mph and (b) 30 mph. Each cylinder has a diameter of 9 ft, a
length of 50 ft, and rotates at 7 0 rev/min. Use Eq. 6.124 and
calculate the circulation by assummg the air sticks to the rotat-
ing cylinders. Note: This calculatedl force is at right angles to the
direction of the wind and it is the component of this force in the
direction of motion of the ship t]@'lat gives the propulsive thrust.

" Also, due to viscous effects, the actual propulsive thrust will be
smaller than that calculated flom Eq. 6.124 which is based on
inviscid flow theory.

F,= —p ur (Force per unit length)
=€ v. ds
On The Cylinder surfuce

Vs rw 8, and ds < rdoé,
So That |

2
F-‘f(rw)(rc/ea)é'?; = z2mr*ew
>

(€. 6.124)

(Eg. b.89)

= (am)( 457 (750 L2, )2 L2
qC?qo -th

Fy= - (0.00238 M)(?‘Mo —-)U‘

) Ry a c.yl)'ndaér' w: |~€n5'ﬂ1 = o Lt
Nuwbey of Clj 1.'nd€VS = Z and Wwind

{

and

) ()
- 23 8U

and
Speest =[0mpH,

AR (253‘}’;)(: me) (s250,8E) (Lo ) (o, ) (2)

= 3%‘300 lL

() AL ompn |
/F9]: 3 x (Fg@ ‘Omm)m) = |05, 600 Ib
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6.104 (See “10 tons on 8 psi,” Section 6.9.1.) A massive, pre-
cisely machined, 6-ft-diameter granite sphere rests tt;ponx a 4-ft-
diameter cylindrical pedestal as shown in Fig. P6.104. When the
pump is turned on and the water pressure within the pedestal
reaches 8 psi, the sphere rises off the pedestal, creaqn;g a 0.005-
in. gap through which the water flows. The sphere can then be
rotated about any axis with minimal friction. (a) Estimate the
pump flowrate, @, required to accomplish this. Assume the
flow in the gap between the sphere and the pedestal is essen-
tially viscous flow between fixed, parallel plates. (b) Describe
what would happen if the pump flowrate were increased to 2Q,.

0.005 in. 5.

|
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Thus, Y
Q,= (9.8bx1

(b) Since & f”L Suppor‘,‘s

e

S /

)( Iz in. /4:4:)

er unit wid

)(wrff) = a.omlﬁ—JEB (4.98

“the spheve 1t is expected Thet This

width = T (44)

ol

min

Pressurk vemains a.Pproxl'ma#e)g the same as e Flowrate

Inereases. To maintai'n ™Tis pressure the diskunce +
woula have +v 1ucvease as Q’)o <oy~ g) IS \n cveased .
Thus, Prom g, 6.13¢

q new
Qo'

1]

(-‘9‘ \ﬂetg) 3
hald
3

.oozsin.) = 0.00315 In.

Thus, The. M wou ld l.tf{cwease_ +o
approximately ©.00630 in.
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