7./

7.1 The Reynolds number, pVD/u, is a very important
parameter in fluid mechanics. Verify that the Reynolds number
is dimensionless, using both the FLT system and the MLT sys-
tem for basic dimensions, and determine its value for ethyl al-
cohol flowing at a velocity of 3 m/s through a 2-in.-diameter
pipe. :

Py . (FL ) (LT )/t. . FYUT

/?efj”ﬂll-f num ber =

s FLRT
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7.2

7.2 What are the dimensions of acceleration of gravity, density,
dynamic viscosity, kinematic viscosity, specific weight, and
speed of sound in (a) the FLT system, and (b) the MLT system?
Compare your results with those given in Table 1.1 in Chapter 1.

- ; " = [/e]oc;'*g = L
g = accelera tion of gravity = =

- ey = JNASS =M = FT?2 e F= M/_T"‘)
P= density = e ime L2 T (since

-2
. : " ~ FL - M
/[,1 = c}ynamlé stco,sﬁ_z,‘ = stress =

e T

Velocity Grachent T~/ LT

. . -Z 2
~ Cot - dynamic viseosity, .. FL T . L
V= J{memalw. viscosity = 7 fe % = =

density T ETAYT T

: -2 -2
_ L wei hl' - weignt & _E = [MLT ):,- MT
§ = Specific ‘9 T Ynit volume |3 L3 L*

C= Speed of sound = ﬁ__~i_€n7% = -l:-

+ime T
Thus,
() 1h The /:LTJq.sJ-fm, (L) 1n The MLT sgskm)
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l0= EL T /O
/u = FLTAT = pulr!
v LT v= LT
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7.3 For the flow of a thin film of a liquid with a depth k
and a free surface, two important dimensionless parameters are
the Froude number, V/V/gh, and the Weber number, pV?h/o.
Determine the value of these two parameters for glycerin -
(at 20 °C) flowing with a velocity of 0.7 m/s at a depth of 3 mm.
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7.4

7.4 The Mach number for a body moving
through a fluid with velocity V is defined as V/c,
where c is the speed of sound in the fluid. This -
dimensionless parameter is usually considered to

- be important in fluid dynamics problems when its
value exceeds 0.3. What would be the velocity of
a body at a Mach number of 0.3 if the fluid is:
(a) air at standard atmospheric pressure and 20 |
°C, and (b) water at the same temperature and ;

pressure? i
B B

(a) Y =p3
c

For air at ZO’C, c =343 3 ( Table B4 1n /4,0;9,1:/:}/3)

So That

aly

V= 0.3 (3433 ) = /o3 %

b) For luter at 20°C , c = /48/ 2 (Table B2 4 ﬂ/pmd/}ﬁ’)
50 That ;

V=03 (1381 ) = 444 2
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7.5

7.5 At a sudden contraction in a pipe the |
' diameter changes from D, to D,. The pressure
drop, Ap, which develops across the contraction |
is a function of D, and D,, as well as the velocity,
V, in the larger pipe, and the fluid density, p, and
~ viscosity, u. Use D,, V, and x as repeating vari-
ables to determine a suitable set of dimensionless
parameters. Why would it be incorrect to include

the velocity in the smaller pipe as an additional
variable?

dp=40(D, 0,V p u)

dp= FL* DL BEL 0 y= LT p= FL¥r? = FLAT
From The pi Theorem, G-3=3 dimensinless parameters reguived- Use
b , V/ and J as repeating variables. Thus,

_”}_: APDIQVjM—C
(Fr72)(1 )% (LT™) 2 (FL™'T) 5 FeLoT?

andd

so Tt /+c=0 (hr F)
-2 4a+b-2¢=0 | (for L)
—b+ C =0 (A:P 7)
If ﬂ//ow 7771175 ﬂzlj _bz-lj Cr-—/) mw/ Theve fore
4dp D, |
e a2
Check dimensions using MLT Syshem .
ff_‘_o‘ B (g 7' 772) (L)
A (LT ML)

= M°L°T° . ok

For T : a b, C
mERL Ve

L (L)) (Frar) = perere

c¢=o | (Ar F)
[+ a+b ~2¢=0 (for L)
| —b+ =0 | ( for 1)
It fllws That &=~y , k=0, c=0 and Theve fyre
D.
7T 22 ! ,
2 DI ; (Cﬁﬂi)
T4 |




7.5 ( Cont )
VM obviously dimensionless .
For T3 . @ b ¢
ﬂf/QLQﬂ

/F['*rz) (L)*(L7") 'b(FL'Z/“) ‘< posere

/+e =0 | (for F)
—4% +a+4b-2¢c=0 (for L)
2-bL +C =0 | (fr T)
It follows That  a=1, b= I, €= =1 and Therehre
77é = //O‘D' V.
M

Check dimensions aszhj MLT system :

DV . (mr3L (LT) .
/0/‘ B ML-l)Té-/ = M°L°T® oK

2y (B2

Thus,

From The C'mﬁnh/*y ej““”é‘”‘” )
: ,
v % D=V, T
Where Vs s The velecity i The smaller pipe . Since
A IRYRVE
o lz5 )Y
Ve 15 not }nz/e/oenclenz‘ of D, b, ant V and Therefore
should not be icluded aqs an Independent vaviable.
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- 7.6 Water sloshes back and forth in a tank as shown in Fig.
- P7.6. The frequency of sloshing, w, is assumed to be a function -
~. of the acceleration of gravity, g, the average depth of the wa-
~ ter, A, and the length of the tank, €. Develop a suitable set of .
- dimensionless parameters for this problem using g and € as re-
... peating variables. '
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2.7

7.7 When a small pebble is dropped into a liquid, small waves A V) e
travel outward as shown in Fig. P7.7. The speed of these waves, — D PG
‘¢, is assumed to be a function of the liquid density, p, the wave- 5
length, A, the wave height, &, and the surface tension of the lig-

uid, &. Use &, p, and & as repeating variables to determine a T
suitable set of pi terms that could be used to describe this MFIGURE P77
problem.

.......

('.'::-7C (/0} )k/ —A}C"‘)
R
citt papictyr A2l A=l oS FL
From The pi Theorem, 5-3= 2 pi +erms reguired. Use
4 P, and 0~ 4s repeating variables. T"')M‘S,
)0 a_ b __c
m=c4apio c
~ . r -]
ana /LT"‘)[L)a(FL""T")L(F‘L') = FL°T

o That b+e¢ =o ( for F)
|+a -4} ~C =0 (For L)
—] +2b=0 (for T)

rt fo”ows that A= ‘/z‘) L:‘/z) C:.--‘/Z) and ’fherea(ore.
o Vo ~'V2 _ I/ 7
77";:: C’k 10 o C ;Lf-’
Cheelk dimensions. Vy

~¢f 2
¢ VEF = (177) | BT ’(”J = LT ol

( FL™!)

!

For T, W_z:)\%aﬂba_c c o
and (L) (L)“'(F'L"’T")L(”L"') = F°L°T

So 7hat b+e = O [»ﬁar F)
|+ a—4b~C=0 (for L)
zb =0 (ﬁﬂ)’ T)
IE #an,s 7‘7)4{: A:—]/ b:a} C:D) So That
1, = 2
2 h

Which 15 obvisusly eclimensionless. Thus,

cIg = 4(5)
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1.8 Assume that the flowrate, O, of a gas
from a smokestack is a function of the density of
the ambient air, p,, the density of the gas, Pe>
within the stack, the acceleration of gravity, g,
and the height and diameter of the stack, 4 and
d, respectively. Use p,, d, and g as repeating vari-
ables to develop a set of pi terms that could be
used to describe this problem.

@: ;(A‘) /3'/ l?} ‘Al d)
o=LT" 2 pyc? Gt gt AL 4=l
Frem the pc theorem, &-3= 3 pc derms requred. Use
o, d, and g 45 repeatiny yarables. Thus,

77,/___ Cpﬁédégc

1) ) (1) (79 T
So That
a=o (r’or M)
I-3etb+C=o0 \ (for L)
| —-l—-2¢ = o (for T)
I+ hllows That a=0, b=- ;‘?, c=-3 , and Therefore
7= ;-.D 7

Check dimensions using FLT system .

@ = L3 = foyere C POk
gt Rt ST

Ceon't)
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79 (Con't )
F;k 77; : « b C
Rl g
(ha72) (Me3)* (L) (LT=% S =2 moLoTe
[+ a=0 (for m)
-3 ~-3a+bt C =0 (for L)

—2c =e (+or T)

It follows Thel g=-i1, b=0, c=0 qnd Theretove
. (% |

| Y
Which is obviously dimensionless.,

For T :

77_3 - %ﬂ"‘-d,l,?c
(L) (m) “0)t (L)<= meroTe

a=0 (krM)
[ —=3a+b+ C=0 (for L)
— 2¢ <o (For T)
It folfows Thet @a=0, b=-l, Czo, and Zhere fore
_ 2
77'3- 7

Which 1's obviously dimensionless .

Thus,




7.7

7.9  The pressure rise, Ap, across a pump can
+ be expressed as
Ap = f(D, p, », Q)
where D is the impeller diameter, p the fluid den-

sity, w the rotational speed, and Q the flowrate.

Determine a suitable set of dimensionless param-
eters.

dp= FL™* D=L N

wzT™" @=L
From 1he /a/' 7heorem y 5-3=72 /91.' %erms rega/red- Use
D,p and w as repeating varables. Thus,

a &, ¢

n
j: Zd (EL) L) (Frry)® (77) = F2eT°
[/t bza (ArF)
-2 ta —44 =0 (Forl)
db-<C =o
It follows Thet r —2J =-l,C==2  and 7here fre (hor 7
= 22 '
. bip @”
Check.  dimensions Using MLT System -
_Ap L me'TTR

= NMUL°T° ok

DY@ (1) (L))"
M= @Dptw"
(L2 W)= (Fe=tr2) (1) = poyore
b=o , (14)' F)
3ra-¥o=0 | (for L)
—-l+2b-C =0 | (for T)
It hllows That  a=-3,b=0, C=~I, and Therelore
= |
", =

S " D
Check dimensions UsIihg MLT syshem .

@ - L3 = pA0/0j0 :
: = =1l - = A Ok
D3  (L3(r ) oL 0‘

5o =4 (5% )

——

F5r772.'

TkﬂS)

et

e —
et
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7.10  The drag, <, on a washer shaped plate
placed normal to a stream of fluid can be ex-
pressed as

D = f(d,, d, V, u, p)
where d, is the outer diameter, d, the inner di-
ameter, V the fluid velocity, u the fluid viscosity,
‘and p the fluid density. Some experiments are to
be performed in a wind tunnel to determine the
drag. What dimensionless parameters would you
‘use to organize these data?

s F AL o 2L VELTY  WEFLT parCtT?
Frem 1he pl Theorem |, 6-3=3 pi terms re;«) recd . Use
di, V, end 0 as repeating varmples. Thus,
a 4 ¢
=B A Ve
’ 6 - o

() (™) " (rrtr) = Foer

| /+ C=o0 (['or F)

a+b -%c=o (for L)

— b+ 2C =0 (for 7)
It follows That €2-2, b==2, ¢ ==/ anqd Therefore

o
/A e
/ d, 2 V’)o
Check dimensions usin 9 MLT system

and

So /4

2

L . MLT .
A0 (L)*(Lr~)(he3) ~

MLOT® ok

For T, : | ,
z Ty= d,d VvV p°

(L)L) (Lr) (FLt7%) = FoL o7

c=o (for F)
[+a+ b — 4c=0 | (for L)
- btdc=o (for 7)
(Ca);ﬁ')
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®
7./0 (con? )
Zt Follows That a=-/, b=o, C=0, qnd 7herefore
R~ /
ne g

Which is  obviously d1mensionless .
For T -
3 . /la’,‘e//‘/o c
CFL2T) L) (LT~)* (FL¥r%) 2 ForeTe

[+¢C =0 (for F)
-1 ta+ts ~4c=o (for L)
/—& + 2c =0 (for T)

Lt follows Tt a=~-1, b=~l, ¢ ==1 gny Therefore

Check dimensions using MLT system .

M ; mLr!

L d Ve (L)(AT‘)(’ML‘5)

%, 55 /afz
a} ///0 - V/o (r)

Since PV is  a stnderd dimensionless parameter

1.

pl 7 4

Thas,

~ (/Pey/;a/aﬁs numécr)/ E‘g. (1) wouled more 60mmo/1/7 be

ex fressed as

0@' /6,/Z
=1 ~§Mcf,

/dl/d)

(z)

/4.5 iér As dmmmamz/ ww/qsu /5 concerneed , £ gs. (1)
end (2) gre Pjawa/@nt‘
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7 11 Under certain conditions, wind blowing past a rectan-
gular speed limit sign can cause the sign to oscillate witha fre- =~
 quency w. (See Fig. P7.11 and Video V9.6.) Assume that w is =~
~ a function of the sign width, b, sign height, h, wind velocity, V,
air density, p, and an elastic constant, k, for the supporting pole. ~
" The constant, k, has dimensions of FL. Develop a suitable set
of pi terms for this problem.

" FIGURE P7.11

werT b2l AL vELTT pRFCT ASFL
From fht pr '/ﬁeo}?b* 6~ 3= 3 P/ "'?'/fn'v,s reza:rfd Us ‘

L o—

o l/ zma/ pas repmz‘m; Mr’/aw'?.'s.;_ hus,

L s wh Vb/o‘ B e o

S S
wh ()" (LT"‘)"//—'L )<= FLoT

so ﬂd‘ | c ‘9 B [;”1 F)

o
]
Q

4 vLo//m/.sﬂwtal-I , and Therefre

TR =
Check dimensons =

;= A f’l{,é

o o :_.{T..,)ﬁ(,_) - o7 OK

U

D) T = LT

PETUN O E S e PR
w~b‘1"24 :0 : ; "::ﬁ(/'ﬁ/ T)

| B bllows Dat ax-), b20,C20,amu Therehre

which 15 obviusly /menszm/es S Cesst )
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7.12  The velocity, V, of a spherical particle

falling slowly in a viscous liquid can be expressed -
as

V=Ffduy )

where d is the particle diameter, u the liquid vis-
cosity, and y and y, the specific weight of the liquid
and particle, respectively. Develop a set of di-
mensionless parameters that can be used to in-
vestigate this problem.

vELr™ dSL w2 FORT yEEc¥ o yE FLr3
From The pi Theorem, 5-3= 2 pi terms reguired . lse
o, M, and & as repeating variables. Thas,
= Vdp® e
and ) b 3YC . pojoyo
Tt (LT Ne)(Frrar)® (FL2) €= FoL°T
e bre =o (hor £)
/| + a—-2b-3¢ =0 (o, L)
o —/tb=0 (for T)
Lt fllows That a=-2, b=1, c ==/, and Therefore
= VA
T gdy
Check dimensions using MLT system . )
Vi o (L )M T pogere gk
d2r (LY mLArR)
5}* Y/
2 7]_2: a:; da_/uléa,c_
(EL-3)(1)* (FL*T) cFLr3)= Foere
[+b6+C =0 Chor F)
—3 +a-b~3c =0 ( for L)
b=p (for )
It follows That @a=0,6=0,c=~1, and Therefore
Ny
2° Ty
thich 15 0b V/a;us/_.', dimensionless.
Thys

- 4(3)

e —

T-1%5




7.3

7.13 Because of surface tension, it is possible, with care,
to support an object heavier than water on the water surface as
shown in Fig. P7.13. (See Video V1.5.) The maximum thick-
ness, h, of a square of material that can be supported is assumed
to be a function of the length of the side of the square, ¢, the

- density of the material, p, the acceleration of gravity, g, and the
surface tension of the liquid, o. Develop a suitable set of di-
mensionless parameters for this problem.

B %%ifé%ﬁf ? ?é

% 75/,(,0) 7, o)
A=L 45U pE ELTY g4 LT o= pLs

From 7he pPr Thearem 5-~3=7 /O, +erms H’zalred Use

ﬁ/ g, and p 4s re/omémj Vmab/e_s. Thus,

=4 L% /0
one LYW= (Lr) C(FL 1) S = FoLoT
So 7‘7u£‘ Cp.. -
I+ a +b—-yc =o

~2b+2c =o
I7‘ A//ow& 777m£ d=-l) b= y -al and There fore

e 4
Which oéwou.s/g c-//mmf:/o/z/ess
For 7T, a b e
> T, = o 2 0‘( /
CEL)(L)*(LT™3) o (FL~ 7‘) ¢ =FLere
/ + C=o
~/+ap—Yc=@
—2b +2¢Cc =©

EF follows That €=x—-z, b=~l, Caef and Therefore

s T

o Liygp
Check dimensions nsing MLT system . .y
A (mT-%) = M°LT

Ligp = ZILT )

Thus,
4 7
Z - qg(ﬂzg/? )

(v F)
(bor L )
(or T)

(o F)

(Br +)
(for 7)

BN ES
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7.14 As shown in Flg P7. 14 and "ndw V5, 4 a jet of hq- -
uid directed against a block can tip over the block. Assume that

the velocity, V, needed to tip over the block is a function of the -
fluid density, p, the diameter of the jet, D, the weight of the
block, W', the width of the block, b, and the distance, d, be-

tween the jet and the bottom of the block. (a) Determine a set -
of dimensionless parameters for this problem. Form the di- =
mensionless parameters by inspection. (b) Use the momentum

equation to determine an equation for V in terms of the other
variables. (¢) Compare the results of parts (a) and (b). 7

fo—b —=f

) V= 7f (,00%

L VELTT PR ELUTY pel WiF bil dil
 Prom the pi marmg,gesi:j 3 pi herms refuwed.
‘gql /;)'.S/Deot/o A /'DP 77, [wm‘w/wu
i t.;,~,77-VD[/£57';; (Lr))
[ /zeck Using MLT =

VD )/—_" : Ry o

B 7r/f+ o

¥

Lok

ol sle ©

ana bon Ty ana 17y are iaz;e,gm/g; dimension less .

,H

) ”v’f,F'a?"N/}}'ﬂ;“mndf/}z;}‘/pp/ﬂi ane d | L]
T M, e |
 So That -

Fd= ( 7 ) ; g o

L

- 7—; 7




/t’ V‘df“l m&ﬂ?f/

')fi[fb‘v

| Th,hs 75”””' £

(&mt) o

7‘£¢lmf “Considerations 4si

KT

p Vz/i

b

“; 50;.n4t_

Ana with A=

A “ﬂ??l«'."”” Yoo

 ,[ai{M,;WM

¢
B BN N D

7fjgﬂmdm¢ g£W

blm Hiehin "




775

715

___shown in Fig. P7.15. Assume that the time, 1, required for the

A viscous fluid is poured onto a horizontal plate as

fluid to flow a certain distance, d, along the plate is a function
of the volume of fluid poured, ¥, acceleration of gravity, g,
fluid densnty p, and fluid viscosity, . Determine an approprlate

set of pi terms to describe this process. Form the pi terms by
inspection.

A A
f——d —e]
- FIGURE P 7 15

t=F(a, ¥ 1, P ,u)
=7 A= =3 0?:'/./ / FLT® /tFL r
From 7he pi Theorem  b-3= 3 pc terms  required .
5’7 /r'z_f/oeaézo'n/ Sor 77, / Contaming i) .

VA
f@i (T)UT™) "= pPoere ok

(L)%

For T, (Cev”z‘wm/zj 'V)
. (L7

= poy°r® 0k
s T s Tt ’

772:

Far ‘723 [Cwyfﬂ/ﬂmj /ﬂaﬂd/a)
77 = f@d _ (Fot )T N “0)%

Falo—p
Ve FLET
Check using MLT System - 4r 3
p/g?//’/‘:. (1.3 ) L772) () Py

)z (t1L7'T7")

LE- (%, 2T

—
——r——

Thus,
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7.1  Assume that the drag, 9, on an aircraft
flying at supersonic speeds is a function of its
velocity, V, fluid density, p, speed of sound, c,
and a series of lengths, €, . . . , ;, which describe
the geometry of the aircraft. Develop a set of pi
terms that could be used to investigate experi-
mentally how the drag is affected by the various
factors listed. Form the pi terms by inspection.

B=Flvpc L ... 4)
L=F y=L7" Pz Fl""fz C-'flT" all lengths, k= L
From The pu 7heorem, l+0)=3 = 140 pr terms Veguired, &here

L &5 The Number o/ lengh Ferms (1'=1, 2 3, etc. ).

By /nspc'c{/on for 7T ( confwmny o0 )
s F .

o= ——— = = A

LA (et o) F
Check using MLT . |

b .Mt

P yz:e_): T L) B )

For 77, 4 com‘hn//%j c)

= MOL°T® ..ok

c V
772 = V oF -E—

and  both are obviously dimensionless .

For all ofher pi terms conteiniiy X,
7= Lo
‘ A ’
and These ferms involving e A3 are obviously dimensionless.

Thus |

L (L

wherc _)_e.é /5 4 sevies of Yy ferms /_e_* A5 2 e
A 4 L /=7 '

....

7- 20




7.17

7.17 A cone and plate viscometer consists of
a cone with a very small angle a which rotates
above a flat surface as shown in Fig. P7.17. The
torque, 3, required to rotate the cone at an an-
gular velocity, w, is a function of the radius, R,
the cone angle, a, and the fluid viscosity, u, in
addition to w. With the aid of dimensional anal-
ysis, determine how the torque will change if both
the viscosity and angular velocity are doubled.

FIGURE P7.17

J= f(//?, o(j/t)w)

From The pi ﬂleorcm, 5-3= 2 pr ftrms regurred.
By /ﬂS/Deat/bn/ for T, (containing T ):
T - FL
77;:/44023 T AT ()R

Check us/hj MLT . -

I = MLZT = M°L°T®

MR (' TNTIL)?
The anq/e , %, Can be usead as T, Since /4 is dimensionless.
Thus,

= FoLo/“'o

L0k

T
MW R3
3': /(A&)B:a?{["é)

It follows Tat iF  botn M and w are  doubled
T will /'ncrea’sek by a factor of ¥

= ¢ ()

oy
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7. /8

7.18  The pressure drop, Ap, along a straight
pipe of diameter D has been experimentally stud-
ied, and it is observed that for laminar flow of a
given fluid and pipe, the pressure drop varies di-
rectly with the distance, £, between pressure taps.
Assume that Ap is a function of D and (, the
velocity, V, and the fluid viscosity, u. Use di-
mensional analysis to deduce how the pressure
drop varies with pipe diameter.

ap=F(0,4,V, u)
Ap= Fr* D= f=[  y=L7™ A= FLT
From The Pl ﬂ?earfm, 5-3=2 pi ferms rezu/ifer/;
By /ns/'oecha'n/ for T, (contining 4p):
. Adp D (eLm2)(L) .
= S = =
LAY i)

FeL°T®
Check using MLT .
¢ apd . (met7-3)(L)
AV T (M) (L)
For 70, (contaming £) :

M= 4

Which 15 obviously dimensionless. Thus,
T = 45)
From The stbment of The problem, dpC { 5o Thit
Eg ) must be of The Hrm
4pd _ o 4
My P
Wheve K 15 seme ctonstant. Tt Thus folloys That

= M*l°T° .ok

o -
A’PD( D>

Imr a ﬁl'uen velo¢1'+j,

’T—@ A;@N\ﬁ%{?
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7.19

7.19  One type of viscometer consists of an
open reservoir with a small diameter tube at the
bottom as illustrated in Fig. P7.19. To measure
viscosity the system is filled with the liquid of
interest and the time required for the liquid level
to fall from level H, to H, is determined. Use
dimensional analysis to obtain a relationship be-

tween the viscosity, 4, and the draining time, 1. Hr
Assume that the other variables involved are the D=

initial head, H,, the final head, H,, the tube di-

ameter, D, and the specific weight of the lig- J

uid, . ‘

FIGURE P7.\9

T=f (DJ He, Hf//“: )
TzT o0=21L w=1 M2l u=FL*r yeFr3
From the pi Theorem, (-3= 3 p. terms reguived.
By ihspection, for 7 (conteining ) -
_TxyD - [T)/FL-B)KL) - 0,040
= = = F°Ler

e S T
Check Using ML
TyD - (T)(ML‘ZT—Z)(L):;. MeLeT® .. ok

o~ MLt
For T, ( Contarning /72)
Which 15 obviously dimensionless. Similarly,
- He
KR
Thus,
YD H, He
D¢ (%, %)
and for a fiied geemetry  ( including 4 and 4 )
¥ = K
Wheve K s a constant , depending on H/D quu Ke/D .
From £g. (1) |
. - bID
| A ET

Where k,= Dlx ana K, 1s a consknt for a Lired 9eometry

']"13




' 7.20

S 72 A cylinder with a diameter, D, floats upright in a liquid
as shown in Fig. P7.20. When the cylinder is displaced slightly
along its vertical axis it will oscillate about its equilibrium po-
sition with a frequency, w. Assume that this frequency is a func-
tion of the diameter, D, the mass of the cylinder, m, and the
specific weight, vy, of the liquid. Determine, with the aid of
dimensional analysis, how the frequency is related to these var-
iables. If the mass of the cylinder were 1ncreased would the
frequency increase or decrease"

w = 7C(Drm ¥)
wi T DL mZFLUTT ys FC

Frem 7The pr Theorem) Y-3= [ o1 +erm Vegul;;ed,
39 Ing/oed-wn

' - =
K R
Check using MLT: s
L [z s t;&zi)_) LS ML ok
Since  There is only | pr derm + Lollows That

where C 1s a Constant. Thus,
' .4
w = CJD V%ﬂ

From This result 1+ Allows That /f rm 15 Increased
tw will decrease .

Cylinder
diameter = D |

3 % §§aw§§§§’% @?1‘?}
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*7.21  The pressure drop, Ap, over a certain length of hori- - ‘
zontal pipe is assumed to be a function of the velocity, V,of the .~ =
fluid in the pipe, the pipe diameter, D, and the fluid density and
viscosity, p and u. (@) Show that this flow can be described in di- - -

mensionless form as a “pressure coefficient,” C, = Ap/(0.5 pV%) - Vs ! Ap, Ib/fe?
that depends on the Reynolds number, Re = pVD/p. (b) The fol- - SR S | '

lowing data were obtained in an experiment involving a fluid with = 3 192
p = 2shugs/f’, u =2 X 107°Ib-s/f%, and D = 0.1 ft. Plota 11 704
dimensionless graph and use a power law equation to determine
~ the functional relationship between the pressure coefficient and

the Reynolds number.

~ (¢) What are the limitations on the applicability of your equa-
tion obtained in part (b)?

@ A= £ 0,0 K)

4 /? I VerT" D=L /”—‘-'FL-"T LR FL FRT
F;fam The ,p)" ﬂearern;,;; .‘:'-'3 = Z 3’ ?i v‘rrm.s ‘ *‘fgavl}"fﬂ.,,

7 ,)v' P ! | R -
o e _‘ﬂf = ; . e L i
B R @7 == [/ o) L s S SR
 Check using MLT systern:
— b 40 . /V/L’l’ =

>
|
<
°
~
>
>~
°
O
r

oy T -

o pvo o (FCTYIAT =
s A=t E R K iy C(FeET)Y
B TR SO R e R

yat s

P R el B ;/'L;: | .(M:/LHT—;’) |

Ayb_ (M L3)(477) ( L) 2 At | Ok

p\/’- S R it

¢

- Jince _q‘ s an unknown ‘fuhc‘-w"ibh;,f'd fackor
of 0.5 Can be jncludedt 14 T, (if desives ) so

LA

| agn = F12)

p = Ci‘ ['Pc )

 where C, 45 The pressure wetfiint ana ReThe Reywlds
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7.2

7.22  The height, h, that a liquid will rise in
a capillary tube is a function of the tube diameter,
D, the specific weight of the liquid, y, and the
surface tension, g. Perform a dimensional anal-
ysis using both the FLT and MLT systems for
basic dimensions. Note: The results should ob-
viously be the same regardless of the system of
dimensions used. If your analysis indicates oth-
erwise, go back and check your work giving
particular attention to the required number of
reference dimensions.

4=F(D )
Using FLT system :
#£=L D=L gL g A

From The pi theorem , #-2= 2 pltems rfiﬂ/}fea/.
By 1nspectién , for 77, (containmg 4 ) :

me £
Which is obviously dimensionless |
For 77}_ (containg ¥ and o) :

(v . FL—I - o/
s = = £°L
. ¥D* (FL3)(L)*

) n
D % ( yb* )
Using MLT system .
4L D=L ¥= MOTTE eE=mMTR
AlThough There a ppears to be 3 peference dim fnsm}u/ only
L retewnce cdimensions ave actually Vegz//r'fd (L ano M T~z)

to deseribe The Vaviables . By /ha’pecfmb/ for T, (see above)

Thus,

=5
ancl +or 772 [szla/hmy & and 0“) z
Mt = LT = ML

For  (miirL)?

ThuS) (as above) :
| :éij $£ (gro;z)

———e e
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7.25’_'

7.23  Assume that the drag on a small sphere
placed in a rapidly moving stream of fluid depends
on the fluid density but not the flyid viscosity.
Use dimensional analysis to determine how the

drag is affected if the velocity of the fluid is dou-
bled.

Let: drag = B iF spheve digmeter = d =1
Hluil velocity =V Lr™ density of flud =Pz FL'T*

B=F(dV,p)

From The pl Theorem, #-3=/ pi tevm regurred.

) B F

Thus,

157 Y /ris,oecf/din :

77':.' —_— = . . = /:a[o 0
A IR g

Check using MLT : ]
B MLT = MLT

oyigr G (L) (L)*
Since Therve s On/g [ pc Zerm , 1+ follows That

O
)y y2g2

—
i

Wheve C 15 a constan?. [ hus,

o& = C/ﬂ Vzdz"
and £ Vs doubled LB will increase by a
#acz.‘or af 4’ . |
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724 *

*172%  The pressure drop across a short hol-
lowed plug placed in a circular tube through

which a liquid is flowing (see Fig. P7.24) can be
expressed as

Ap = f(p, V, D, d)

where p is the fluid density, and V is the mean
velocity in the tube. Some experimental data ob-
tained with D = 0.2 ft, p = 2.0 slygs/ft*, and
V = 2 ft/s are given in the following table:

dfy | 006| o008] 010 | 0.15
ap bty | 493.8 | 1562 | 640 | 12.6

—4
4p= FL? p=FL r*

Plot the results of these tests, using suitable di-
mensionless parameters, on log-log graph paper.
Use a standard curve-fitting technique to deter-
mine a general equation for Ap. What are the
limits of applicability of the equation?

FIGURE l’7 2%

v=L(T~  p=L d=1

From The Pl ﬂcorfm S$-3 =2 p Ferms regmreo( Gy Inspecflon

for TT, ( containihg Ap) :
77;__. Ap =

-2

< FoeT

Vat 4 CAL*T2)(LT') >

Check usjng MLT _
ap . ML

o T

MeLeT® -7’4

For T, ( contarning Dand d):

D
m,= 7T

2,

(wWhich 4s obviously dimensionless ). Thus,

Ap

|

Br The data g1ven

D/cll 333 2.50

D
B = f‘:/d)

.00 l /33

A,%al/‘

617 ]/?.5‘ l g.00 l /58

A log-log plot of These data Shoun on The follunng page,

(C&’ﬂ’é}
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T -

Pi1

(cort)

100

N | ||

, 10
Pi2

Since The data plet as « straight line on

a log- log p/ot/ 777! ezt(eaézéﬂ for The data
Is of The formm 4

| W =ay
Where 7, = Ap/layz; Gnad T = D/,(. A power
law £+ of The detr gGiroes

A= 0.505 and b =399

Thus, Ap 7y 297
?;72 = 0 5‘05[2—)

T hus é,twf/o'g is applicable over e
renge of dat« /.33 =% -g < 333
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7.25 f - : .
7.25 A liquid flows with a velocity V through ~ ¥ (m/s) |33 | 443 | 5.2 | 625 | 7.00
a hole in the side of a large tank. Assume that - I : ] = T§ l - ]
' o V= f(k g p o) h (m) 0.50 | 1.00 | 1.50 | 2.00 | 2.50
where h is the depth of fluid above the hole, g is Plot the-se data by using appropri?tfa dimeysion-
the acceleration of gravity, p the fluid density, less variables. .Could any of the original variables
and o the surface tension. The following data have been omitted?

were obtained by changing # and measuring V,
with a fluid having a density = 10? kg/m? and
 surface tension = 0.074 N/m.

Vs Lr™! 4 =L N J= LT3 /o-_= A oxFL!
[rem The pu Theorem , 5-3= 2 p( terms veguired.
By inspection for T, (contammris V) :
M= =2 AT = jere
I PSS TR
[er 7, [(:on%v/'/m:)g Y 4nd§ r): .
pg At L (ectr) (T 17 e o
T = = ; -
z 2 FL!
Check u MLT. .
heck using J 2 g (LT (1) o ML ok
T oM
T}IUS, \/ _ % (/gg%z.)
Va4 7
bor The data. given:
ﬂg«é‘/a" 2.3/x10" /3.3 xi0f ‘ 29.8x10¥ .5.3.0’(/0# gz,qx/p"l
V/Vzh l xy l.41 (Y1 l.%¢ xy )
2ot ‘ --
- F Soapegees :
% y :
— . e : —
(34 S
= e e R e e LgA*
%0 Qe - o ) ¥o x,0? a
The graph and 4able show That V/i Vah s lk;clep(ndmi of ,ogv/i‘/or Thus,

The variables L_and O could have been omitted .
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(a)

7.2  Thetime, t, it takes to pour a certain volume of lig-
uid from a cylindrical container depends on several factors,
including the viscosity of the liquid. (See Video Y1.1.) As-
sume that for very viscous liquids the time it takes to pour
out 2/3 of the initial volume depends on the initial liquid
depth, €, the cylinder diameter, D, the liquid viscosity, p,
and the liquid specific weight, y. The data shown in the fol-
lowing table were obtained in the laboratory. For these tests
€ =45mm,D = 67 mm,and y = 9.60 kN/m>. (a) Perform
‘a dimensional analysis and based on the data given, deter-
mine if variables used for this problem appear to be correct.
Explain how you arrived at your answer. (b) If possible, de-
termine an equation relating the pouring time and viscosity
for the cylinder and liquids used in these tests. If it is not
possible, indicate what additional information is needed.

pNs/m?) | 11 | 17 | 39 | 61 | 107
(s) | 15 | 23 | 53 | 8 | 145

2= £ UD 4, )
. " -3
=T L2 D2 /L(:ZFLT y= FL
From the pi Theorem 5-3=2 pi' 4erms reguived.
8y 1spection , #or 77, ( containing *)
= EXD (T)(EL3)(L)
1S T

M (FLRT)
Check dsing MLT sSystem .

_-é—_b_’_D :r (T)(ML-J-T-Z)(L): MGLQTO - 0k
- (M=)

For T ( contuinigs £)
T 5

= F°°T®

Whieh 15 obyvivusly dimensionless, Thus,

220- 4 (5) 2
or The data j/c)m _é‘ = Z5mm =0.b72 (a epﬂgﬁ”f),

67 mm

Thus, From Eg.(1) tw/Tn LD a eonsfant it Follows
That 28D = constant. For The deia 9//9»4.‘

(C@ﬂz)
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7.26 Ceon )

zrb
e
Since T, is essentially constant over The vange of-

The experimental data Tne Vﬂrmé/es dsed /w The pmb/em
o ppear +o be e&r/ect

¥77| 970 | 874 l,m' 372

(b) The average value /pr T, 1s 8§74 50 That
LD
2
gna Thevefore
ﬁ-? Mﬂ = 375‘/4-
& (?Lxlo’”)(wx/o/m)

= 3’7#

£= /3L K
with 1t 1x JEéﬁﬂ(/S L«)hen/{a s in umts of M5 /m?
Note That 7his restviched @quation 135 only val/d

for Afp= 0.672, D= blmm, and ¥= T604N o’ wih
)3 of The //7;7’74/ vo lume being poured.
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7.7
7.27  The pressure drop per unit length, Ap,, 5 T ;
for the flow of blood through a horizontal small , Q (m (S) ép (/)
diameter tube is a function of the volume rate of 3.6 x 10°¢ 1.1 x 10¢
flow, Q, the diameter, D, and the blood viscosity, 49 x 10-6 1.5 x 10
. For a series of tests in which d = 2 mm, and 6.3 x 10-¢ 1.9 x 10
# = 0.004 N-s/m?, the following data were ob- ' 7.9 x 10-¢ 2.4 x 10°
tained, where the Ap listed was measured over . 9.8 X 10-¢ 3.0 x 10*

the length, £ = 300 mm. — —

; e Perform a dimensional analysis for this problem,
and make use of the data given to determine a
general relationship between Ap,and Q (one that
is valid;}_f\og_othér values of D, (, and y).

ZM% = f (CP, D//u)
df, = FL™3 @2 L3777 o=y s LT
From The pi Theorem | 4 -3 =/ pr teem regued.

y =) pection
Yy Inspectio s 44, Dt . (FL'g)ﬂ-)‘f

- 0,0 —o
a HQ T (FLETL3T) CALT
Check using MLT:
B0 I .
Dz (M7= ) (13T :
Since There 15 only | pu term it tollows That
4p, 0* ¢

40 o
wheve C Js 4 copstant. For The data gi1ven

Y, )(o.ooz,m)" ragxsst AP
%) 0.3m /(0.00¢ N-5/m*)Q @
and Therelore using the date v the table
ag b*

7—@—_ Fo.6| 4.7 | 0.1 | Hou | yo

7744/5} The average vyalue oy C = 40.5 and

Aé = 4o, 5 /f‘—g-?-




VA

:
¥

_the dimensionless parameters.

2g*| T

S SR S W (o R
As shown in Fig. 2.26, Fig. P7.28, and

728

distance between the center of gravity, CG, of the object (boat
and load) and the center of buoyancy, C, is less than a certain

amount, H. If this distance is greater than H the boat will tip
over. Assume H is a function of the boat’s width, b, length, £, |

Video V2.7, —
a rectangular barge floats in a stable configuration provided the |

and draft, k. (a) Put this relationship into dimensionless form. |

(b) The results of a set of experiments with a model barge with

a width of 1.0 m is shown in the table. Plot this data in di- |
power-law equation relating |

mensionless form and determine a

1
b
{
ek
H
i

section

()

bt

 €¥3§§§?,W

of The pr Ferms arve

()

buiously

¢, m

H,m

2.0
4.0
2.0
4.0
2.0
4.0

di

enss

0,10

B FIGURE P7.28

=3 p/ Hrms r?gaireoi‘ '

0.833
0.833
0.417
0.417
0.238
0.238

Shou/hbzlou) i

i
{

h/b H/b

,qu/enlvlwél{/al?a' values for

Hlb,

4

© 010 0.833

0.833

010

0.20 0.417 0.8

H/b = 0.0833 (h/b)

-1.00

~ 020 0.417 o 06

X

.. 035 0.238 T 04

\

N ———

035 0238 02

—

.00

0.10

0.20
h/b

0.30

0.40

An

Inspection
“clepend o)
ob—/mne 1/

. '»pt‘
_ i/s_"

The same Value

does

veveals that /b

£/4

o
S,

LA

lo|—

(v ‘* 5

and from 1The

- 000 aaton

no

¢t \valuts of

R S
) ‘(’45(&15 -

 power-law-




7.29

7.29 A fluid flows through the horizontal curved pipe of
Fig. P7.29 with a velocity V. The pressure drop, Ap, between
the entrance and the exit to the bend is thought to be a function
of the velocity, bend radius, R, pipe diameter, D, and fluid den-
sity, p. The data shown in the following table were obtained in
the laboratory. For these tests p = 2.0 slugs/ft>, R = 0.5 fi,
and D = 0.1 ft. Perform a dimensional analysis and based on
the data given, determine if the variables used for this problem
appear to be correct. Explain how you arrived at your answer.

V (ft/s) | 21 | 30 | 39 | 51 ;
Ap (Ib/f) ”‘{ 12 | 18 | 60 | 65 B FIGURE P7.29

4= F( 1y R D, 0)
Ap= FL~% V=L7™ RFL D2l  p= ELT]
From The pc 777601801) 5-3= 2 p’ terms re;w’re/(_
By tnspectisy, #or T, (contaming 4p)
22 '
7 /%f b (FL(’/;;"))QT')z: FLT
Check sing MLT system :
A L T L e e

-

orE " (M) (i) * "o

Fer 77, ( Contamng K ana 0)
D
7T 5

which Is obviously dimensionless. Thys,

24 (2)

_olFft_ /
T5Ft T (4 amsz‘myz‘), Thus,

From £9.U1) wrn _% a Constant 1T follows That
4p - Cornstand A‘a«/eye*/; for The dute j/u'm :

o>
% } 0.13b { 0. 100 l 0.\47] 0.!25‘}

dlInce 'é'fz, /s hot Cvnsfm;f/ 1T follows hat The

Variables wsed for The problem are not correct.

3%

For The data G 1wen

nlo
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7.30 The water flowrate, Q, in an open rectangular channel
can be measured by placing a plate across the channel as shown
in Fig. P7.30. This type of a device is called a weir. The height
of the water, H, above the weir crest is referred to as the head
and can be used to determine the flowrate through the channel.
Assume that Q is a function of the head, H, the channel width,
b, and the acceleration of gravity, g. Determine a suitable set of
dimensionless variables for this problem. ‘

B OFIGURE P7.30

Q= F ( H, 5} 32)
Q= L>7T" b= 1L g= LT72
“rom The pi Theovem, ¥-2=2 pi +trms reguired.
By inspectin for T, (contaimng @) :
e Qo LT e
HEg%z (L) G2 %
v T, (L'&/;M/imiy )

ZTZ" s

i

Py

Which is obvisasly dimensionless . Thus,

@
’L/%O?//z = % (_/é)

BN
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7.3l

7.531 From theoretical considerations it is known that for
the weir described in Problem 7.30 the flowrate, @, must be
directly proportional to the channel width, b. In some laboratory |
tests it was determined that if » = 3 ft and H = 4 in,, then

- Q = 1.96 ft>/s. Based on these limited data, determine a general .
equation for the flowrate over this type of weir.

From Problem 7. 30,
@ e
4% i’/p = ¢ (79) ‘0
§/nh: O« b 1t Lollows From Eg,[/) That

@ 3 by
/1‘5'/:_\7 /2 - C (7; )

where C 15 a cmnsfnn‘lL Thus, for The dita 7/:/}’/4

o= ) | L 9t -’?3
pEGEL (PR (50 2 ) Gee)
= 0598

So That  Tne General e;aaﬁo}f o

Q= o. 5785 fg 1>
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732 SAE 30 oil at 60 °F is pumped through a 3-ft-diame-
ter pipeline at a rate of 6400 gal/min. A model of this pipeline
is to be designed using a 3-in.-diameter pipe and water at 60 °F
as the working fluid. To maintain Reynolds number similarity -

_ between these two systems, what fluid velocity will be required
in the model?

For A'??ﬁ/)o/a’s number  similarity Y

Vw D _ VD
=%
or
V =- _..7_/f.”_ 2 \/
/ = 5. cr)
Since o)
V= area
and . ‘74/ 23/ /}7.j l_&? )
Q: [ 6400 i )[—-g—-;r /128 in? = /43 .zcl-"?
S
&0 r—r%’n
+hen /4.3 f££7
; V_-:— S - 2.02 —&
2 s
"{(3#)

77;#5/ From £q.0) |
-5 ri2
;- (1.2/x16° ££2) (3. 2)

(2,02 _’?:") = 652 )Clo.z éé'

(6‘.5)(/0'3’—?-2:)[7% #t)

?7"39




7.33

7.33 Carbon tetrachloride flows with a velocity of 0.30 m/s
through a 30-mm-diameter tube. A model of this system is to be
developed using standard air as the model fluid. The air velocity
is to be 2 m/s. What tube diameter is required for the model if
dynamic similarity is to be maintained between model and
prototype?

the Reynolds number

Ry cfyrm,m'c. sz.ml.)am'ﬁ] ‘
model| 4nd protorype. THUS,

must be The same ;ﬁ-’r)

Vi Do - Z_Q
Y, T
So That | )
D = Um V. p o= (/.%xw""-%“x)(ajogs“") (0. 050m)
™ U Y (Losxw i@z my [50F0m

= 0.10Fm = 109 mm

:7_40
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734 -

7.34  The drag characteristics of a torpedo are to be studied
in a water tunnel using a 1:5 scale model. The tunnel operates
with freshwater at 20 °C, whereas the prototype torpedo is to
be used in seawater at 15.6 °C. To correctly simulate the be-
havior of the prototype moving with a velocity of 30 m/s, what
velocity is required in the water tunnel?

For dynamic similars 9 | The Reynolds number must be e
Same for mode/ and ,Oroéoz‘gpé Thus,

Vo Ly Y0
9 v
So Tt
- %y D
km- m z V
5/nce /méey@ozo’c)~ /004 %15 s  (Table B.2)

J
2/ (Se’ﬂwz‘er @ 15.6°C) S 11T X107 ¥ (Table 14), and

.D/D "5 't ol lows 77m

~—

//,pr/
m (177 x16™8

S

j)) (5)(30%) = /29 Z
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135 |

7.35  The flowrate over the spillway of a dam
is 27,000 ft’/min. Determine the required flow-
rate for a 1:25 scale model that is operated in
accordance with Froude number similarity.

For  Froude number similarity

~—

Viom

ok

ancd wit a :gma

o _ (2=
4 A
Since The F/aluraécl O,

qu VA/ Where A is an
if follows That
Oor . i d

Thus, } ;,:

{

¥l<
}QH ~

obtained From the velationshep

ap/oropr/aie cross-sectiona] area,

—_— . \Z
Vi (G- Ge)

% 3
Gn= ()@ = (35) Caoon 22
+t

3
mir

L
= §.b¥%
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7.36

7.36  For a certain fluid flow problem it is known that both
the Froude number and the Weber number are important di-
mensionless parameters. If the problem is to be studied by using
a 1:15 scale model, determine the required surface tension scale
if the density scale is equal to 1. The model and prototype op-
erate in the same gravitational field. '

For dynamic similarity ,
Vo _V_
gk V2L

"

(Froude number S'Im'llaw;‘l'y)

and

2 E 2 '
/))m Vi }/m - ‘/)__V_j_. (Weber number 53m':]ar;45)

o satisty Froude number smilarity  (with g+ J'm))

v L

and Therefore for Webev numbeyr .s.xmflaw’“/g

_d:”:',;(o”” vﬂlﬁm: M'ﬁ,m iw..,m.,,,.l
2 S G b i i)

Thus, with du /2= tis and @, fo=1,

-3
—l-, 2':." " /0
'—‘cm:”)(/{ﬁ‘) a4y X
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7.38  If an airplane travels at a speed of 1120
km/hr at an altitude of 15 km, what is the re- _
quired speed at an altitude of km to satisfy Mach ’
number similarity? Assume the air properties cor-
respond to those for the U.S. standard atmo-
sphere.

For Mach  num ber Jl.ml'/arﬂy )

(3,5 (%)

15 Rem gz/m

The speed of Sound can be caleuleted Hom The Qjaa'/:no'/r

=t'ék7' (Eg /. 20)

and for ar A=/40, R=2849 J/—,é;.k
At I5%km altifude,

T= —56.50°C +273./5 = 26Tk (Table C,2)
and qu 844/»1

T==30.9%°C + 273.)5 = 2362K  (Table € 2)
T/’)HSJ at (5hkm alt tude

/«5%4:4 ]/(/‘)‘0){2347% )(2/4, ]/<> _/35__14_,
and at  8lkm

C’M:}/(/.eﬁo)(z,% ?A; )(234 21c) = 308 %
From Eg.[«’)
c
V., = ~§-i4: Vs 308 120 *
?‘/{M C’Ifﬁm ’2'75.—‘ ( )
= 170 ®a
_ r
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7. 40

7.40  The lift and drag developed on a hydro- }
foil are to be determined through wind tunnel:
tests using standard air. If full scale tests are to-
be run, what is the required wind tunnel velocity -
corresponding to a hydrofoil velocity in seawater
of I5 mph? Assume Reynolds number similarity
is required.

For /Fewo/a’: numb?ri similarity )

V/m /eM = M
Y, v

where X is some Charvacterishi /en_qﬂr of The hga’méi /.

Thus,
V. = Z:L”.. -’-q
” vV

/ M

and wi ,2/1,,,,=I (full scale est)
Y (157 x/o""‘—s’%-t)

- o, : I5mph
V= 2 (1.26 x 107 ££7) (15 mph)
= /87 m,o/7
7-46
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(a)

(b)

7.4} A 1/50 scale model is to be used in a towing tank
to study the water motion near the bottom of a shallow chan-
nel as a large barge passes over. (See Video V7.7.) Assume
that the model is operated in accordance with the Froude
number criteria for dynamic similitude. The prototype barge
moves at a typical speed of 15 knots. (a) At what speed (in
ft/s) should the model be towed? (b) Near the battom of the
model channel a small particle is found to move 0.15 ft in
one second so that the fluid velocity at that point is ap-
proximately 0.15 ft/s. Determine the velocity at the corre-
sponding point in the prototype channel.

For Froude nymber simi]arity
Vim _ 4

Vindn Vir®
Where L 15 some c/mmcéewg'a‘zé. /en;??,/ and Wit Jm*
 %lE t
T"WS) \//m V 51 5“0 ('5*%“‘5) = 2,12 Anots
£
Ff'om —rabjg Al l 'km)t: (05[43’)(328]_&_): IL?%

So that v, = (2.12 4nots )(. M ) 55‘8_’59‘"

Since from Eq. (1)

h: .’_Q,"L“ = -
9 50

V=[50 (015 %) = |oL%r

So ‘nla.‘l‘.‘
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7.92 A solid sphere having a diameter d and
specific weight j; is immersed in a liquid having
a specific weight 3(y, > 7,) and then released. It
is desired to use a model system to determine the
maximum height, h, above the liquid surface that
the sphere will rise upon release from a depth H.
It can be assumed that the important liquid prop-
erties are the density, y/g, specific weight, y;, and
viscosity, z,. Establish the model design condi-
tions and the prediction equation, and determine
whether the same liquid can be used in both the
model and prototype systems.

Assume Tt ’£=3[(d H, & Xh; /ua‘) Note Thet by

mcluding %, ¥, and g, boTn m mass and weight of The
Awd and mew are faken into account. THis follows since
/d[dfﬂﬂf‘/) 3,’/} It would be incorrect # list &,2 %, and
j as mde/omo’en'i‘ Var/aé/es We expect fne mass of The spheve
fo be importenl since Tne sphere wil] have accelevated miotion.
Jince,

AL dSL #EL GERC OQEFC gRiTTh zectr
The pi Thevrem indicates Bat 7-3= 4 pi tferms veguived. A

dimenswwna! analysis yre /d_\-)

P V‘)
f2 ¥ Va?

H 4

$(%,

[hus , The Model design conditions ave
&_"_“_’ = ﬁ. Q:S_ﬁ = é’ﬁ &1‘1 é@’_ =Z4f _g-

i d a;Cm g : l;(,m da bgL d3

-+
—
————— e —————

and The pr‘tohé-hén egua{:fén—:s

+ _ A
& dm

‘K[

From 1716 /4!.S£ model des,gn w”d',‘bo.n (wﬂh ;;.Of"" ))
| /[{f’”‘ = Ifﬂ! ﬂ“j

Ay % Va3
Since dmjd & The lenshh sca/e and &5 presumably not egual

ts one, Eg.l) will not be ..so'//.sﬁed /F The same liguid 1s
used . ThusJ The _same liguid cammt be used.

1)
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7.43 Water flowing under the obstacle shown in F
a vertical force, F,, on the obstacle. This force is ass
function of the flowrate, Q, the density of the water,
eration of gravity, g, and a length, ¢, that characteriz
the obstacle. A 1/20 scale model is to be used to pr

- tical force on the prototype. (a) Perform a dimensi
for this problem. (b) If the prototype flowrate is 10(
mine the water flowrate for the model if the flows
ilar. (c) If the model force is measured as (F,),, =
the corresponding force on the prototype.

S

y

A

g. P7.43 puts

zes the size of
edict the ver-
onal analysis
)0 £k, deter-

umed to be a
p, the accel-

MFIGURE P7.43
re to be sim-

20 Ib, predict

2

L=

P PLYTE gilT

(@) F=F(6f 5 8)
F2F @= L3717
From 1he PC Theorem ,5-3=2 P terms reguived,
Aqnd a dlrhens}onﬂl ﬂnd/g.’/',r 5,&/;{_%
Fy‘ _ O
3~ C}‘ ( '
Kis P
(k) For similarity b

@/h’\ - =
Vi T

et ween model and pro‘}‘o-}-g.pe_

@
[g2*

@, [/%_? Wg;Lan) :V(:)]V(z‘:,)?(l)ooo —?3)

£t
= 0.557"'5—7

3

(€C) The Prea’tlc’/'lbn éiaa,-!:/b,, /8

F{,

O ——————

Se 1hat F}ﬂa
5= 7

4nd  w:Th Fgm )
F"/’ :(/)(I)(:QD

(F ),
Lo Fom L

\(4) €D,
) 24,
) (20 1) =

-
-

L_&;g» X 105— 1L
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1.4% A thin flat plate having a diamé

ter of 0.3

ft is towed through a tank of oil (y = 53 Ib/ ft®)
at a velocity of 5 ft/s. The plane of the plate is

perpendicular to the direction of motion
plate is submerged so that wave action

, and the
is negli-

gible. Under these conditions the drag on the
plate is 1.4 Ib. If viscous effects are neglected,
predict the drag on a geometrically similar, 2-ft-
diameter plate that is towed with a velocity of 3
ft/s through water at 60 °F under conditions sim-

ilar to those for the smaller plate.

IF viscous and wave effects m'? neglected ,

B+ (A0 V)
where: L3 drag = F , d~ fp/m‘e digmeter = L ez Fluid density = ,t-“[‘tr)2
and V'~ velocity = LT~ . From e Pl /%earem, 4-3= 1 pi term

Veauired) and & dimensional

e

1T Pyt

Since Theve s only one p

oL

analysis yields

¢ 'ﬁl‘ehm

= _A‘Q__ = Constant

/am ]//’mz dIML /O Y2d*
Where m refers 4o The Smaller, 0.3-ft-diameter plate

Thus )

.

From The dete 71y'en :

L= 1% slugs/ft® ; d=
p o= 53 /AT
M 7.2 #/s* °

Themﬁm) From Eg. (h

oy = 0.3

G s

2. 2 m
Dr

dats ) (3 46) (p)t

0&.-_ //,?4‘ 3

53 15 /2 )
32,2 F/s*

(5£)* (0.3f)

(1)

242, V= 3 s
SN Y SN, VYY)

//.‘/—/L) = 2L 4 1L
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7. 45

T.45 A model is to be used to determine the
velocity, V, of liquid flow through a small-di-
ameter passage in a wall separating two pressur-
ized tanks as shown in Fig. P7.45, Prototype
characteristics are indicated on the figure. The
model is to have a length scale of §, a viscosity
scale of 2.0, and if possible, the pressures are to
be the same for model and prototype. Assume
that V' is a function of p, — p,, d, (, and the fluid
viscosity, 4. Determine the required dimensions
for the model, and the velocity scale.

V= ﬁfﬁ‘ﬁ)

V=LT"  pepz A d=

From 7he Pr ’/heorem, 5-3=2

dimensiona! analysis yselds

_Va =4
(P-4 )4

Thus, The similgrity reguiren
Lo _ 4
dm

and since The /leng?h scal

" = 19 psi
py = 20 psi P

-

e

™
+ = 80 Ib#t3

N3

FIGURE P7.45

d, £, n)

L A=L /a='/—'/:’-r

P! Ferms reﬁw;’?ﬂg and a

(%)

nifﬂ'l!. Is

1t follows That

€ /s

Ve,

,pmv - d”“. = =

S A 4.
There fore, g 0./ n
. * )1} :
//m: 4‘-0‘;” = /,oomu) and Gom~ 4,‘”

7Ze predlé'/la;r egua tion s

7.

(B-£1d  (P-8),.dm
Jo 7‘hu.‘ ﬁ: ﬂf»"'g)m don &

Vo (g-p) d A
Rr (B-8B) = k=f), du/d= /¢, and P [p= 2.0 i+ follous
That

\_/_/‘r/_u_': “)(é){?’_’) = -}L = 0,124
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746

746 For a certain model study involving a
1:5-scale model it is known that Froude number
‘ »snmllanty must be maintained. The poss.1b111ty of
" cavitation is also to be investigated, and it is as-
sumed that the cavitation number must be the
same for model and prototype. The prototype
fluid is water at 30 °C, and the model fluid is water
at 70 °C. If the prototype operates at an ambient
pressure of 101 kPa (abs), what is the required
ambient pressure for the model system?

For Froude number s/my /d‘;’/:}*jr )

: Al

2

=
Do

So Tt ((witn

<IF 3
)]

For cavitation numbey similarty
['7?- - /Pau- )m

Ve FpvE
It follows Prat |
(ﬁ“ﬁv— ),m = /9 V‘z

and making use of Eg. L)
(B~ ) ” pR

For water (from Table B.2):

@ T0C L, =971 Zaég/;m
@ 30°C P =H5T Am?,
Thu.s from Eg.(2) N
- (?7732_61 [
Fom - (

(9957 -én:*-; )

= 502 «&Pa. (abs)

"3//6)(/0 /V//m (26s)

= 4243 x10° NJm* (abs)

)

€2)

3 3 ‘f-”
g:) (/o/x/o ;’f; - %243 x)0 ng)*‘ FUpXID =5 |
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747
' T7.47 A thin layer of spherical particles rests
on the bottom of a horizontal tube as shown in
Fig. P7.471. When an incompressible fluid flows
through the tube, it is observed that at some crit-
ical velocity the particles will rise and be trans-
ported along the tube. A model is to be used to
determine this critical velocity. Assume the crit-
ical velocity, V, to be a function of the pipe di-
ameter, D, particle diameter, d, the fluid density,
p, and viscosity, u, the density of the particles, -
Pes and the acceleration of gravity, g. (a) Deter-
mine the similarity requirements for the model,
and the relationship between the critical velocity
for model and prototype (the prediction equa-
tion). (b) For a length scale of } and a fluid density
scale of 1.0, what will be the critical velocity scale

(assuming all similarity requirements are satls-
fied)?

(= AEICEN VYWD

FIGURE P7.47

Ve=LT™ b=l dilL ,oz FL*T* g2 FLT F;:F,_"*rl giLlT™
From the p¢ 'f’hearem 74 3= 4 pi terms reguired, and o
dimensiona| analysn.s yrelds )
££2:¢(5wﬁ,ﬂz)
M | A
Thus, The similarity mgummeﬂs are
du oL Pl L GmOmp . gd%
Dnw D &M (DP //‘m /uz.
The Preds.c_-)-w’n e%uahbn I's
Pl o fon Ve D
# Mo
() If all 5smn)an+3 mﬂummenb are satishied The predichion
ezuahon indicates Thad
V,»‘ g m ™
ch < /—‘% %D’:D; (1. 0)//! )(2) E/—;— (

From the thrd s;m:.)arri'-y r%ummout (wit g= g,m

(%")3{/0 ![ (/o) W

Thus, from E‘g (n»
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7.438 - Atalarge fish hatchery the fish are reared in open,
water-filled tanks. Each tank is approximately square in
shape with curved corners, and the walls are smooth. To cre-
ate motion in the tanks, water is supplied through a pipe at
the edge of the tank. The water is drained from the tank
through an opening at the center. (See Video V7.3.) A model
with a length scale of 1:13 is to be used to determine the
velocity, V, at various locations within the tank. Assume that
V= f(£, ¢, p, u, g Q) where £ is some characteristic length
such as the tank width, £; represents a series of other perti-

nent lengths, such as mlet pipe diameter, fluid depth, etc., p

is the fluid density, u is the fluid viscosity, g is the acceler-

(a)

=L (L L,

cdi1menssonal analysis
V/@ 2 Y
& ¢ (F

)ij

ation’ of gravity, and Q is the discharge through the tank.
(a) Determine a suitable set of dimensionless parameters for
this problem ang the prediction equation for the velocity. If
water is to be used for the model, can all of the similarity
requirements be satisfied? Explain and support your answer
with the necessary calculations. (b) If the flowrate into the
full-sized tank is 250 gpm, determine the required value for
the model discharge assuming Froude number similarity.

. What model depth will correspond to a depth of 32 in. in

tt_)e_ fulLsized tank?

p 3. 0)

Frem 7The p; 777f’orem/ 7-%3;-
g/’c/ds

4 pc terms Y‘c?ga//;ed and o

¢
)

Thas, 777: é/m//err/y regwremen%s are

/&'/m »QL' ' Cp,mz -

a)l

[ O

Im R

and The

Lo Fom

L4

Prediction € jaa,ém PR

. L9

Lo Him ﬂ#

V1= Vi

)
Bom the Nast similarty

O ﬂ
b

reza/remenf WiTh /0 "/0 qnd/lsz/c
/K’M =

L s

e

7. A

[Fowever, From The second s/m,/m*nLg Veja/remeni wﬂ'h

Jm=a @, .

—

¢
Since These

(= )

7_Lwa Vejuu"t’/nené are

Conflict I'E

/N

7£0//0W_r 7714£ ’/776 Sjln;/a/:.@ Veza/remen'/x Cannot

be satished.

Ne.

é(sz"/ﬁ' )
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7.48 ( Cont)

(L) For Froude number similarity

Yom V.
Gk VGE
and with fm=§
Vo - Lo’
vi ¥~
Thus, From The prediction «Qﬁual-m'n
VAL . Von Jom
('t »A://aw.s 7‘732;& | 2 5/,

- () -\ (5

so That with l“/ﬁ = I//'5’

57z
@,m-‘ (—,—‘3—) 5(250 ?p/m) = 0.4}/0£p/rn

Noi‘c.'ﬂm% his same Vesult can be obtdines from The second
similarity reguirement ((Which Corvesponds fo Froude
Num ber 5/mzf/ﬂn'7§) Sihce

G - _@F
X5d, A2
anik 7770’(, 16/4 | 57:.

&, - (-f;:) &

Geemetric similanty rezm}e.s That

,)elfzm - &
Lo A
or ﬂ"/r" - | ,QW

|
1 L3
So trat all /fn;ﬂt.s scale as The length seale . Thus,
- (L
(Qaﬂ%kwﬁ,"(ka)éqfﬁ%mﬂ@n

= (,—[5)(5’2 in.) = 2,46 in.
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7.49  The pressure rise, Ap, across a blast wav
in Fig. P7.49 and Video V11.5, is assumed to be 2
the amount of energy released in the explosion, E.
sity, p, the speed of sound, ¢, and the distance fro
d. (a) Put this relationship in dimensionless form. (b) Consider
two blasts: the prototype blast with energy release £
blast with 1/1000th the energy release (E,, = 0.001
distance from the model blast will the pressure rise
as that at a distance of 1 mile from the prototype blast?

e, as shown | i -
functionof |
, the air den- -

m the blast, |

and a model
E).Atwhat |~
be the same

[ —

, -

/7:':

Moo
HNe T

-
[T

—\S H . ——
N

NS

€

FLT
o
/

Pi Theores

a dimensitna ! gnal

S
\&\. .

1l and |

erms regm :

Ap _,

<
R RRERREE
N :

wilarty

sim

E

ana

B

. k/[ ,ﬂ,,‘

i 'Pfed1¢1'L104 :

N
\)-‘:
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o

\%)
o

SN 5 .
o




7. SO

758 The drag, 9, on a sphere located in a pipe through
which a fluid is flowing is to be determined experimentally (see
Fig. P7.50). Assume that the drag is a function of the sphere
diameter, d, the pipe diameter, D, the fluid velocity, V, and the
fluid density, p. (a) What dimensionless parameters would you
use for this problem? (b) Some experiments using water indi-
cate that ford = 0.2in,, D = 0.5in., and V = 2 ft/s, the drag
is 1.5 X 1072 Ib. If possible, estimate the drag on a sphere
located in a 2-ft-diameter pipe through which water is flowing
with a velocity of 6 ft/s. The sphere diameter is such that ge-
ometric similarity is maintained. If it is not possible, explain
why not. |

s

(@ L= L (a?}D, \/)/o)
BF d=L D=L viT" psFrR
From The pr theorem, 532 2 pi #trms reguived, and a

dimensiona/ analys:s ((;/In,;/d’j

5 = (%)

/VZD"

s

(b) The s/milari#y /‘€Zm/émm'l' /5
O . d

—— -

D, D
5o That 0.2in., . d&)
6. 51n. zZ
and A= o 8 £ ( required o’mme#ﬁer).

T hus, The prediction E‘ﬁaa_/:w}q L3

9 S,

-
—

o 2D,
So That
B: é[}i)z%)z /9% (ana wim /Ozgﬂ)

CENL 20l 2 _
0= z;)("'z%ﬂ) (15xi’h) = 211k
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@)

(b)

7.51 Flow patterns that develop as winds blow past a
vehicle, such as a train, are often studied in low-speed en-
vironmental (meteorological) wind tunnels. (See Video
¥7.5.) Typically, the air velocities in these tunnels are in the
range of 0.1 m/s to 30 m/s. Consider a cross wind blowing
past a train locomotive. Assume that the local wind veloc-
ity, V, is a function of the approaching wind velocity (at
some distance from the locomotive), U, the locomotive
length, £, height, h, and width, b, the air density, p, and the
air viscosity, u. (a) Establish the similarity requirements and
prediction equation for a model to be used in the wind
tunnel to study the air velocity, V, around the locomotive.
{(b) If the model is to be used for cross winds gusting to
U = 25 my/s, explain why it is not practical to maintain
Reynolds number similarity for a typical length scale 1:50.

v (U L4 bp p) * )
veLr™ U= LT 4= h=L b=L P= FUYT*  p= FUT
From The P Theorem T1-3=4 P' +erms V‘ezatred ind a
clrmensiopal analgsis glelds

=4 (4.8, 247)

Thus, The 5/m,lm+y re u:remo.rb Ure
ﬂnm = _/_@, bw 3._ ﬂ'ﬂ h U“‘" = /e-—l:’--D

The [’fedcc-l'lon eguo:élon IS

AL

T U
Since The density and yiscosty of The air flowing around The
frain ana The aii- 1h The wind tunnel lpoyld be practically
The same (/9,,,.,/)/&4,,,. =), 1t follows from t1he last
sim;larity Vezu:remen-t (whicn 15 T ;Qeyno/ds number)

that U_ /’%)U

771145 wiTh a /en;‘fh Scale of 1250 and witu
U= Zé‘/m/s

[ C’a‘o) (Zsmft) = 1 250 /s

This }’egulrrd model veleeity 15 Mmuch higher Than
Can be dcheived /7 The Wwine tunne| ane
Thevehre ¢ s hot /)Fﬂ(;fzca,/ to marntas /@e holds

Aum ber .6/m:/ﬂrn"{7 7"/7{ Vejzwre;/ model Ve/ocrl—g 3
"]"ao /’119/)
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7.52 An incompressible fluid oscillates har- where D is the pipe diameter, w the frequency,

monically (V = V,sin wt, where Vis the velocity) t the time. y the fluid viscosity, and p the fluid

with a frequency of 10 rad/s in a 4-in.-diameter density. (a) Determine the similarity require-

pipe. A { scale model is to be used to determine ments for the model and the prediction equation

the pressure difference per unit length, Ap, (at for Ap,. (b) If the same fluid is used in the model

any instant) along the pipe. Assume that and the prototype, at what frequency should the
Apl‘ = f(D’ V(h @, t: H, P) deel Qperate?

. y-3 : ) om - . -2 SR,
4, < FL° pEL y=LTT ws=TT 2T usRTT pEACT
From the pi Theorem, T7-3 = 4 pi terms reﬁufrc'a; and a
dimensiona! anelysis gields

D 44 (Bt wt ,MD)
= == ) % P
/ﬂVZ. D /“’
(a) 77ws The similarity Jreéu/ri’mmix are

Vo Tyt bty Ot flom b IOVD
D. D , S

and The Prech'flén egzmém'n Is
DA /3@ = 'Qm Aéﬂm
- el 2 /00" 2

(%) For /ﬁ)eqna/ds m:mblr .s‘m':}qr/é ( 7?11 /as:.‘ J/‘m/'/ar#g, )"?ZUIVPMP"Z))
with The same Hwed 14 model anmd Pr‘oi‘o‘fgpe ,

Vorm . L2
Vo — bm

Jo  That ﬁ"am he -ﬁ’mst 5&»//0;*:5‘9 r?ju/rehmi
Mnr

+ O
Thus, +» satisty The I’é’malﬂmj similarty reguivement
(n Eay
or |
L™ t,,,. (“' Yo = (#)" (0 5) = 1eo e
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733 During a storm, a snow drift is formed behind some - |- | | || | e b
,,,,,,,,,,, ... bushes as shown in Fig. P7.53 and Video V9.4. Assume that = | L IR ' L
the height of the drift, A, is a function of the number of inches AT ‘
of snow deposited by the storm, d, the height of the bush, #, ~ |
the width of the bush, b, the wind speed, V, the accelerationof = | T
gravity, g, the air density, p, the specific weight of the snow, - | R
 Ys and the porosity of the bush, 7. Note that porosity is defined - ERARN
as percent open area of the bush. (a) Determine a suitable set - Bushes
of dimensionless variables for this problem. (b) A storm with -
30 mph winds deposits 16 in. of snow having a specific weight
of 5.0 Ib/ft>. A half-sized scale model bush is to be used to in- R T
vestigate the drifting behind the bush. If the air density is the B FIGURE P7.53
same for the model and the storm, determine the required spe- T
cific weight of the model snow, the required wind speed for the N ‘ P
model, and the number of inches of model snow to be deposited. | | | = | E N N
(@) D=L H, N, % N
: e 11 AW ANEA) A N ‘,
LTR g . ‘% PN 2o g] e —_——
% $2 oy =3 Eoy b 7 |
l"'—"j;" e-’,'l ' l‘:“r I
~rom: 'fhe 7? PL 'h"lecbmm 1-'3 =6 ¢ e s x"r"?ZuIVé T an
a climensibnal  analysi 1eld T
hi_afd b F V \
— =Y = 'Ji’._ ) '?”/ — /
- H ; ) ‘ £ /:"q' /
_— = —— ‘; : e
( hus, for similarity between The model ank pr y pe
| B PR
; T - - )‘*vv B
! P = a &, = -
Gnd_for £, p and 4.
i i ™\ 1Y o P amd —
‘ Ll - - / O 4+ 3
i 2 17 pe) - ksl
: Also, VR v a
- Yam 14 ]
i . ‘. i - ' H
VT RS & jaas:
- e o - n i 1 -
) So Th With G, = wet | Rm/H T -
V, - é-r " \ ,. — 7-_{ ', - o) 1
V= )55 V= \(5) (32mph) = 21 2emph
and 4 |
{ : , 1 e B .
VAR VAyciein) e 900
: e h = K. [ = -t 1
1. = .M/ - - {2 ) leln.] -_—_—wu t Jﬁ:‘
o § =T
7460
|
i
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7.5¢  Asillustrated in Video V7.2, models are commonly
used to study the dispersion of a gaseous pollutant from an
exhaust stack located near a building complex. Similarity re-
quirements for the pollutant source involve the following in-
dependent variables: the stack gas speed, V, the wind speed,
U, the density of the atmospheric air, p, the difference in
densities between the air and the stack gas, p — p,, the ac-
celeration of gravity, g, the kinematic viscosity of the stack
gas, v,, and the stack diameter, D. (a) Based on these vari-
ables, determine a suitable set of similarity requirements for
modeling the pollutant source. (b) For this type of model a
typical length scale might be 1:200. If the same fluids were
used in model and prototype, would the similarity require-
ments be satisfied? Explain and support your answer with
the necessary calculations.

(=) Since V=oLT™l DT /o FL™*7? PP = 2 FUtT?
2 LT ’7{5 :",4,2'-,:-"' D—-L JF fellows Frem The Pe
Theorem That -3 = 4 P Ferms are reguived. A dimensions]
Gnalyssis Yjelds __[\5: , Z_TQ) VDZ', and K_‘ﬂ, as a pessible
set of p/' +erms. Thds, #Z'c strmlarity regf;remen-l:s would be
Yim | Un O . VD Y o V2 (PR (pp)
On U I N L .
(_A) 1/:"0)" _D_E. —Zao and "Zém:;'% '7‘716 Second 3/‘/771./4}‘1.437
regzgremfni /3 km - Yim __Q = 200 ( see aéoue)

However, Prom The T1hivd simdarty V?zuwemm‘f Wi
—r

;""’:g Vim _ Zéﬂn - .
“p"" D 200

This resalt contlicts
S1milarity reju/reméni-

reg urrements Cannot  be
e&”dlﬁ&”s . A/d ’

with  That Fom 771g SecevA
gna Theredore The similarity

satishéa undoy The stated
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7.55  The drag on a small, completely sub-
merged solid body having a characteristic length
of 2.5 mm and movmg with a velocity of 10 m/s
through water is to be determined with the aid
of a model. The length scale is to be 50, which
indicates that the model is to be larger than the
prototype. Investigate the possibility of using

either an unpressurized wind tunnel or a water
tunnel for this study. Determine the required ve-
Jocity in both the wind and water tunnels, and
the relationship between the model drag and the
prototype drag for both systems. Would either
type of test facility be suitable for this study?

45 demonstrated n FZ 7/‘7

/?eyw/zls namber similarity o
tm’e"” =
Y

yz
V™ 3 2
Lf model tesks ave run in unp
Y (standavd air-) = 144 x 167
So 77Mf

or

&

(146 x155 20.™)

fom
/

.Z:f medel testks are run in

Van = (1) 55 ) (7

is  reasenable in

A

\S./” ce 'm

Wt geometric and dynam:
o

-—

vr
7

U‘

S
(112 x)o~€ _/L:_" )

for How around immersed bodses,
3 refuired so Jhat

4

14

re.r.:urlyeé/ wmol -/wmel The n
/m‘/s dnd Vﬂwé'r) L1Z2x)0 /m‘/.s,

(E)(102)- 200 2 (40 i omel)

water tunnel with Uin =V, Then

)

m

m—

S

-
-

0 0 200 % (6»* water +unne/)

‘botn cuses, either The wind Yunnel
or The water tunne| Could be  used.

Pe—— N

J/hl7qr/'7‘3/ ('t follows That
Bl

RN
°r = LA
pol A
771445 lér wind -/imne/ dests
B (997 B2 )(/o“")

]

%)

Lo (12388 ) (39, %)" 50 (for wind Hunnel)

and for Water -/mme/ 4(.5/:3

Ly (o) /_/_) 0444 [ for water Hunnel)
m (0.3003”‘“)2 /\.5"0
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7.56

7.56  The drag characteristics for a newly de-
signed automobile having a maximum character-

istic length of 20 ft are to be determined through
a model study. The characteristics at both low
speed (approximately 20 mph) and high speed (90
mph) are of interest. For a series of projected
model tests an unpressurized wind tunnel that will
accommodate a model with a maximum charac-
teristic length of 4 ft is to be used. Determine the
range of air velocities that would be required for
the wind tunnel if Reynolds number similarity is
desired. Are the velocities suitable? Explain.

Fou /{’eq;;a/ds num ber JI‘MI./N‘/'*.‘? )
/0,,,, Vom ZM = ﬁ v A

N

Han Vs
N

Since 7}'14 wind tunnel s uﬁ,on!.'rmr/'y'e,/// The air ,Om,oerﬁés will be
a p/ommmm‘e/g 1he same o model and profotype. Thus, £g.¢/)

recuces o /= ]eé ,

and for The data givem

= (207[5) = 5V
Vi (4 #¢) g

So 771415

7216’/'?,6;'() ot low speed
Vim = & (2omph) = oo mph
and at Aigh speed
W, =5 (qamp),) = 450 mph

So  That The model Ve’/oc/?‘y vamge Is (00 mph to 450 mph

AT The high Velecrty 14 The | womd Funnel  compressibility of The
alr weuld shkart 4o become an Importint 7%(769)*/ wherveas

Compresssbslity 15 hot Impertant s, The Profotype. Thus, 7he
Nigher velocity veguired #or The model would not be surble.
Ne.

r7~é3
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7.57

7.57 If the unpressurized wind tunnel of
Problem 7.5k were replaced with a tunnel in
which the air can be pressurized isothermally to'
8 atm (abs), what range of air velocities would ;
be required to maintain Reynolds number simi-
larity for the same prototype velocities given in!
Problem 7.56? For the pressurized tunnel the
maximum characteristic model length that can be
accommodated is 2 ft, whereas the maximum
characteristic prototype length remains at 20 ft.

1

o, A’eg»o/ds number J/‘In/‘/qr/‘/.fﬁ J
/0 m %ﬂ]"" - /_‘iklj
“

So That 2l //
Vo = .
2T

/
< v

For an 1deal gas , p=p

= Clons tant

fom
L.
o

v

£

7

771“5) -+ 49
P P

or »
B

From £9.0) (assuming /04,4"/14)

- 2
N A

where P is atmespheric pressure ( pressure  at which prototype
operates ), and 5 Is pressure of compressed ajr th The wind

For $=8p

z f¢)
771145/ at Jow speed

Vin= /.25 (20 mph) = 25 mph

and at  high speed

Vin = 125 (90 mph) = //2.5mph

There fore , The r’eza//‘e/ /néa/e/ Ve/acﬁfy mnge ;s

A5 mph Fo 1/2.5amph.

, and for ssolhermal compression

%:(_?L)(_EZO#Z'.‘) V= lz5V
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7.58  The drag characteristics of an airplane
are to be determined by model tests in a wind

- -tunnel operated at an absolute pressure of 1300
kPa. If the prototype is to cruise in standard air
at 385 km/hr, and the corresponding speed of the
model is not to differ by more than 20% from this
(so that compressibility effects may be ignored),
what range of length scales may be used if Rey-
nolds number similarity is to be maintained? As-
sume the viscosity of air is unaffected by pressure,
and the temperature of the air in the tunnel is
equal to the temperature of the air in which the
airplane will fly.

e a R ¥

For Reynolds nambey simi larity J

(?,. Vo ' /01//@

2z
so That
) Ao . pom Y.
AV G
For an ideal 9as, p=pRT, and with consionl femperatave.
-/-fo—z Constant
o .
B Fom

and Eg. 1) can be wriken as (with M, =u)

How _ £V
T B Vim
For The date qiven
L _ 01 ER) V.
A7 (1300 kP) Vim

and with V= (1£0.2)V, i+ Allows Tt

_}Z@_ (ro1AR) /

-~

L T (1300hP) (1£06.2)

7771/5) Dhe range of /Fnﬂz sales /s

C.0647 to 6.077/ .

(/)
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7.59
breeze.”’

Wind blowing past a flag causes it to “‘flutter in the
The frequency of this ﬂuttering,E

‘w, is assumed to be

a function of the wind speed, V, the air density, p, the acceler-
ation of gravity, g, the length of the flag, €, and the *‘area den-
sity,”” p,. (with dimensions of ML™2) of the flag material. It is
desired to predict the flutter frequency of a large ¢ = 40 ft flag
ina V = 30 ft/s wind. To do this a model flag with £ = 4 ft
is to be tested in a wind tunnel. (a) Determine the required area

density of the model flag material if the

large ﬁag has p, =

0.006 slugs/ft>. (b) What wind tunnel velocity is required for
testing the model? (c) If the model flag ﬂutters at 6 Hz, predict

the frequency for the large ﬂag

w=Fv, P, 2

wT Y LTT pE ML

From 7776 P/ Theorem , 6-3 =

A, A
;'z,r'z L2l fEMLT

3 -
3 pi terms Yeguived, ana «

dimensional Anal ysis 7;@/4’.5
2 - v. /4 )
©lz <t £
(2) For Smilarity
LAm - _/_éi
lom Lon L

and Since P, =

~—
-

/0
fut 4
(5) Br simlarity

ce) With The simi

/mfiv‘y reza
eZa ation s

so That

sy s

l

¥

R

%o yra ooé

" A= )/azoé-j—r)

V.

-

R

I/ﬁléoéf) - qugEr

irements satisied he

o

prediction

- ,/ T -
l/%—’“ W, = T/%ZL (é”y) MZ&_




7. 60

7.60 River models are used to study
types of flow situations. (See, for example,
certain small river has an average width and
and 4 ft, respectively, and carries water at a
f’/s. A model is to be designed based on |
similarity so that the discharge scale is 1/250
and flowrate would the model operate?

For Froude rumbey sin

Vo

m——

Gl

Where ¥ 15 seme character

= —
-

many different
Video V7.6.) A

depth of 60 ft

flowrate of 700
Froude number

At what depth

ni lari7y

%

Va2
I:F'?Llé /pfnjﬁr/ dna w17 f,m:g

Von — \ [
N
Since The Flowrate 15 (D= [/A) Where A is The
appropriate Cross sectiona) dreaq,
Q’"l- I/"”’/Z)’m = f.el" .é)—t-"
b VA £ 75
A/fa) Am —
A
Jo That 4')”" 1 (1)
Zm 75
Q 0
h
T “ £”3‘:. O.1llo
£
and Hor a protetym depth of 4 The

model de

Ly = (011

Correspon ding

The model Flowrate z:;

a
@”’!~[Z’5‘o

)

p?’h /5

0)(4£t) = o 4yo £

obtainey from Eg. (1):
3
/700_,%): 7 80 £3

—

s

7- b7
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7.6!  As winds blow past buildings, complex flow pat-
terns can develop due to various factors such as flow sepa-
ration and interactions between adjacent buildings. (See
‘ideo V7.4.) Assume that the local gage pressure, p, at a
particular location on a building is a function of the air den-
sity, p, the wind speed, V, some characteristic length, €, and
all other pertinent lengths, €, needed to characterize the
geometry of the building or building complex. (a) Deter-
mine a suitable set of dimensionless parameters that can be
used to study the pressure distribution. (b) An eight-story
building that is 100 ft tall is to be modeled in a wind tun-
nel. If a length scale of 1:300 is to be used, how tall should
the model building be? (c) How will a measured pressure in
the model be related to the corresponding prototype pres-
sure? Assume the same air density in model and prototype.
Based on the assumed variables, does the model wind speed
have to be equal to the prototype wind speed? Explain.

(a) p=LChv L, 0;)
PEELT prECtTE v LT UL 4z
/::}’0/71 The P’ Weorcm/ S5-3=2 'P" -/-(rms V?gal‘red, and

dimensionel analysis yirelds

o £
e ¢ (/1: )
(6) £, geometric similar'ty
Lo - L
Lim ke
So Thet )ézm /Qt.'nm

g

L Ll | ‘
and 1F follows Tat all pc‘r'l:u.tenf 18/157715 are Sealed wiTu
k’Thc Ien’ﬁ Seale Lum /ﬁ., Thus, with Ly /4 = ‘/aoo

: + =
model height = 108FE = 0333 Lt

(¢ W/"fh 760/‘“&‘:’:& S/'ma'lam'"f'j SL'xLl.sagec/ Jt ‘fa Uouu ‘h"a’é
_f_ = j!i"’_'_,'_,
PV> LV
Thus, Witk fm=f N
p= (VIM) P |
With e set of qiven variables Theve Is no yegu:remed
-For the thoc.rl"j SCale) an/\/) so The Model Wind Speed
The rotot Wwind
does net have o be eﬁud “Theo P jpe

Speed. No .
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7.62 A thin rectangular plate is towed
through seawater at an average velocity of 5 mph.
The plate is held in a vertical positiorgx and projects
above the undisturbed level of the water to a
height z. A 1:4 scale model is to be used to
predict the drag on the plate, and the model fluid
is also seawater. (a) Assuming that Froude num-
ber similarity must be maintained, determine the
required model velocity. (b) What is the required
value of z,/2? (¢) A measured drag of 1 1b on
the model will correspond to what drag on the
prototype?

(¢) For Froude number Slm“arﬁ‘g,

Vim Y.

Vi tw  ViL
T”NIS} b)l.‘nl 3:54‘4
Vo= S V

A

(b) Bor geometric Jl‘m;larrf'y,
Fua _
T &
i Jn L
L

That

“So
_._.m=
s

) The

D

p VI/Q].
and +f all

= V—l,: (b-'rm’bk): O?»S'DIYY!P)) ‘

= 0,250

Cllf;’)eﬂswnless G!l"‘ag Parqme+ey 1S

mel then

0O

-

similavity requirements ave

B

PV
Thus,

and 76»' The data 7/(/

Lo Vaer Lo

B 5. ot G O

E.;z. Ez

€

B =0)02)4) (1) = 640l




7. 64

7.64 The drag on a sphere moving in a fluid
is known to be a function of the sphere diameter,
the velocity, and the fluid viscosity and density.
Laboratory tests on a 4-in.-diameter sphere wer§e
performed in a water tunnel and some model data
are plotted in Fig. P7.44, For these tests the vis-
cosity of the water was 2.3 X 10~ Ib-s/ft* and
the water density was 1.94 slugs/ft’. Estimate the
drag on an 8-ft diameter balloon moving in air at
a velocity of 3 ft/s. Assume the air to have a 0 2 4 6 8 10 12
viscosity of 3.7 X 10-7 Ib-s/ft? and a density of Model velocity, ft/s

2.38 x 1073 slugs/ft>. FIGURE P7.0Y4

Model drag, Ib

O=F(d, v, p u)
Where: A9~ drag= F, d~sphere duameter =L, V~velxity = LT/
P Flurd density = FU*T? /a~//u,;/ wscosity = FLT .
f'?am' ‘/7:4 pi Theorem , 9-3= 2 p/ terms required, and o
dimensional analysis yields |
& / /pvd /
oVEd* (=
Thus, eynolds namber similanty s reguired 5o Tt
/ﬂ,, Vin dm . Ve vd
A /
= Mm p o d
Z M A ;
(2.3 x107% %52_)(2'39,“0 5_!(%1:) (g £t)

= 37xi -7&:_‘5 “ (3£‘)
(37x1077 12 ) 1194 B2) (Ep)

or

= SugtE
From 7he 7mp}7/ for U, =5 49 ’C’%/ O(Qm: l.36 L. Simce
oL Bm
Ar2a* " fom Vo o™
or -ﬁ _K.Z. __é_z A
v Thut O 7w
o ¥ A 2 .
ﬂ@_(z.sé’xu)” lugs) (3 ) (#5¢)
(/9% 3405 ) (549 £2)2 GER)*

(/30 b) = 0.274 11
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given shape (see Fig. P7.65a) can be expressed as
Ap = fD, w, p, Q)

where D is the impeller diameter, w the angular velocity of the -

impeller, p the fluid density, and Q the volume rate of flow
through the pump. A model pump having a diameter of 8 in. is
tested in the laboratory using water. When operated at an an-
gular velocity of 407 rad/s the model pressure rise as a function
of Q is shown in Fig. P7.65b. Use this curve to predict the
pressure rise across a geometrically similar pump (prototype)
for a prototype flowrate of 6 ft3/s. The prototype has a diameter
of 12 in. and operates at an angular velocity of 607 rad/s. The
prototype fluid is also water. ‘

4p=py-py

Centrifugal pump

A/DZ ,ﬁ[p/‘;._){a) 4)>

T s PO

()

b= w=7
From tThe pi Theorem, $-3= 2
dAnalysis 9ields

49  _ ¢

/k)ip:.

(35,

Thus, the S/}m‘/w’:@ m;w}’emmi e
&4‘1 = _.Q 3
w,,b 3 @ D

se That "
G () 2) e

7.65  The pressure rise, Ap, across a cenqﬁfugal pump of a

Ap,, tpsi)

8 g T {
i { Mode! data
,, = 407 rad/s
S D, =8 in.
6 ...
4 }
]
|
2t i
0 ‘ | N
0 0.5 1.0 1.5 2.0
Q,, (ft3/s)
)

B FIGURE P7.65

. -l
= Lg/

¢

P terms re;w'red/ and « dimensione/

and 14/ 7he /"’A‘-

5/:’/eu

&, = (Yo7 ¥24) 1 g,

(bor 4 )" /2y

e < 1ie £

., 3
From Tie graph (Fis. P7.654) 4p = 550 psc for @), -‘-//?3’%,

4p .
purd*

02 0,2

anA il /0"‘/4»1 2 )
AP:[Z/L{?”.)[);;)

= 27.8 ps¢

4 P

et
2

- i (19077’2}4)
b,

oo 124 )2

—

() G5 poc)

/hus,

-1/




A
7.6& Start with the two-dimensional conti-
nuity equation and the Navier-Stokes equations
(Eqgs. 7.35, 7.36, and 7.37) and verify the non-
dimensional forms of these equations (Egs. 7.38,
7.41, and 7.42). .
U L
= 5 =o 3.
QU . LU . . pu. Q%4 . )2y
A dt+“éx+v‘3—9)-‘ M (9/" 39:.) (Eg 7.36)
QU 2L, ) P _ )w- v
/0(2,{-““%*'”'75 = 5—5’ /Oj-f-/‘aﬂ_ ay)(b 7.37)
As tndicated mn Sectouw 7.0 let
*3 L‘. 1": _:_V_"' *:-. .£
lk v v % 73 ’f:,
X * Y *_
*Tx o YTy £t

7775 Various #4/)576}’/}747(/0‘/14' Can be made as A//aw.s‘ 3

du . alvu*) 5y

X ox* X

and similarly

oY ¥
T2 dx*

LY R Y VIR I VT Ve
X T A sx* 3y T X oyt 5y T X Syt
/4/.50) _)ig - V 9 au*)éﬁ.* —\_{‘)z“*
oxr X oxvlggr Jox — AF ggwe
and simidarly,
LCye v 2rE 2wy Pt e o
2)(2 /(L?X*L 252' A* 35%L }? -;'Tz 2’;;2_
Br The local accelevgtuon
ou _ a(Vu“) AtF LV Ju¥
ot 0% ot T ot*
amd  similarly,
. v or¥*
PE™ 7 or*
(CZon/i)
1-72
o
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(con? )

=y he pressure Ferms

OB 2 Bp oxt. A apt

24 Ix¥ DX L ox*
and Sl}m'/dr/y)

2p . £ dp*

209 L 2y*

5(4557‘/%&;1‘/0‘4 of  The uvay

jous Terms, expressed in terms of
The dimensionless ayiables

) , Can be made 17> The or/'gm'rq/
C/t :[felfm;‘/d/ €3uaf10/1$ (555‘ 7-3’.s; 73(,/ and 7,37) 4o

yiel d Egs. 138, 739, and 7.40. To obtain The fine!
form 75/0/? Egs. 741 and T.42 divide each +erm
by /OVZ :
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7467 A viscous fluid is contained between wide, parallel
plates spaced a distance 4 apart as shown in Fig. P7.67. The
upper plate is fixed, and the bottom plate oscillates harmonically
with a velocity amplitude U and frequency w. The differential
equation for the velocity distribution between the plates is

du u

where u is the velocity, ¢ is time, and p and w are fluid density
and viscosity, respectively. Rewrite this equation in a suitable
nondimensional form using A, U, and  as reference parameters.

Zef y*: -;1 w *= -5 anA f*: Wt so That:
/
ou . 2Tu*) ot* L 1 dutp) = Uew 4%
o o+ * Jt S ot
qu . 2(ULT) oyt L puk Ly T2
oY 213/* 2y 2g* h 9y

h
pu . U 2 gc_g*‘)_%‘z*: U 2
oyt 7334- 24¥) 2y h* dyr*
771u5/ 7he or/'g//'m/ ds Hevential Pzaaé/a'n becomes

pUw Qu* _ LU Fu*

sE*  Thr ST

* *
owh®| 2% o 2t UT
ﬂ/u ot¥ o y*

or

J

—
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7.68

7.68  The deflection of the cantilever beam of
_ Flg P7.6¥ is governed by the differential equation

dy
151;1-; P(x - 0)

where E is the modulus of elasticity and I s the 17 P
moment of inertia of the beam cross section. The é 4
boundary conditions are y = 0 at x = 0 and 4—x
dyldx = 0 at x = 0. (a) Rewrite the equation 2 . |
and boundary conditions in dimensionless form - L
using the beam length; {, as the reference length. FIGURE P7.068
(b) Based on the results of part (a) what are the |
similarity requirements and the prediction equa- |
txon for a model to predict deﬂectxons" ]
| L t *: y )<
(a) e Y I and x i So Tat
dy . dlg)gx*. g dy? (L) = 4,
dx dx* dx dx* \ g dx
Ynd
*y (% )ds* =1 dy”
x> dx* b )dx T Joer
Thus, the original diFferential eguation becomes
EI | jJz,* '
Sy = P (04*-a)
L1 der?
ovr 2., ¥ =
dzy® _ PR ( e l)
Ax¥* EI -
and The boundary conditions are
r »* *
Y=0 a‘f x—=<:~ %Iﬁ )C*—‘—O.
, ¥
) The .S/m‘lar,+_7 yezmmménfr are
T®
* Xt . X Bn «am P :
XM = x or N i3 I an&‘ -
A E ., ET

The prédzclv‘an eﬁuduo

y*= yk

or _!2 ; gﬂ__
1 A
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1.
clode at one end as shown in Fig. P7.¢1. Initially

- the liquid is at rest, but if the end is suddenly
opened the liquid starts to move. Assume the
pressure p, remains constant. The differentia
equation that describes the resulting motion of
the liquid is

2
Ly _p, (o

+
PP ""(ar2

where v, is the velocity at any radial location, r
and ¢ is time. Rewrite this equation in dimen-
sionless form using the liquid demnsity, p, the vis-
cosity, u, and the pipe radius, R, as reference
_parameters.

Let )

[
IS Some Combinations of The

dimensions of ﬁ/me and V
parameters having the dimens

y

1 dv,

1)

r or

-
L, th 2

p*=
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7.70

tween two infinite parallel plates as illustrated in
‘Fig. P7.70. Under the influence of a harmonically
'varying pressure gradient in the x direction, the
fluid oscillates harmonically with a frequency w.
' The differential equation describing the fluid mo-
tion is
du 0’u
p Py = X cos wt + ‘“ay’
where X is the amplitude of the pressure gradient.
Express this equation in nondimensional form us-
ing h and w as reference parameters.

7.70  An incompressible fluid is contained be- -
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h yl —- u
—] X
h
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FIGURE P7.70
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7.71 A viscous fluid flows through a vertical, s
nel as shown in Fig. P7.7(. The velocity w can be

w = f(x,y, b, u vV, op/oz)

where u is the fluid viscosity, y the fluid specific w
mean velocity, and dp/dz the pressure gradient in the
(a) Use dimensional analysis to find a suitable set
sionless variables and parameters for this problem., (

ferential equation governing the fluid motion for th
is

€

quare chan-
Xpressed as

eigl{t, V the
z direction.

b) The dif-
is problem

~

of dimen-

b
B, (P, a_v_v)
0z YT R\GE ay?
Write this equation in a suitable dimensionless form, and show
that the similarity requirements obtained from this analysis are
the same as those resulting from the dimensional analysis of T
part (a). ! ® FIGURE P7.7|
(@ szf(x) J, A'J/“/ a’J ¥, 5£ =1 ) 3
WELT! X2 g3l b2l ux ety e pELT L= FL
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1.72 Flow from a Tank

Objective: When the drain hole in the bottom of the tank shown in Fig. P7.72 is opened,
the liquid will drain out at a rate which is a function of many parameters. The purpose of
this experiment is to measyre the liquid depth, A, as a function of time, ¢, for two geometri-

cally similar tanks and to learn how dumensmnal analysis can be of use in situations such as
this.

Equipment: Two geometrically similar cylindrical tanks; stop watch; thermometer; ruler.

Experimental Procedure: Make appropriate measyrements to show that the two tanks
are geometrically similar. That is, show that the large tank is twice the size of the small tank
(twice the height; twice the dlameter, twice the hole diameter in the bottom). Fill the large
tank with cold water of a known temperaturc T, and determine the water depth, A, in the
tank as a function of time, ¢, after the drain hole is opened. Thus, obtain k = h(t). Note that
tranges from ¢t = Q when h = H (where H is the initial depth of the water), to t = t5,, then
the tank is completely drained (h = D) Repeat the measurements using the small tank with
the same temperature water. To ensurq: geometric similarity, the initial water level in the small
tank must be one-half of what it was in the large tank. Repeat the experiment for each tank
with hot water. Thus you will have a total of four sets of h(r) data.

Calculations: Assume that the depth, 4, of water in the tank is a function of its initial
depth, H, the diameter of the tank, D, the diameter of the drain hole in the bottom of the
tank, d, the time, 1, after the drain is opened, the acceleration of gravity, g, and the fluid den-
sity, p, and viscosity, 4. Develop a suitable set of dimensionless parameters for this problem
using H, g, and p as repeating variables. Use ¢ as the dependent parameter. For each of the
four conditions tested, calculate the dimensionless time, tg"%/H'?, as a function of the di-
mensionless depth, 4/H.

Graph:  On a single graph, plot the depth, h, as ordinates and time, #, as abscissas for each
of the four sets of data.

Results:  On another graph, plot the dimensionless water depth, h/H, as a function of di-
mensionless time, 1g'/?/H'?, for each of the four sets of data. Based on your results, com-

ment on the importance of density and viscosity for your experiment and on the usefulness
of dimensional analysis.

Data: To proceed, print this page for reference when you work the problem and click kere

to bring up an EXCEL page with the data for this problem.

# FIGURE P7.72

(doﬂ 2 )
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Solution for Problem 7.72: Flow from a Tank

H for big tank, in.  H for small tank, in.

16.0 8.0

h, in. ts

Big Tank with T = 57 deg C

16.0 0.0
12.0 9.2
8.0 20.0
4.0 33.8
0.0 57.0
Big Tank with T =20 deg C
16.0 0.0
12.0 9.0
8.0 20.3
4.0 33.0
0.0 ‘ 57.2
Small Tank with T = 57 deg C
8.0 0.0
7.0 3.1
5.0 9.5
3.0 18.2
1.0 30.1
0.0 41.4
Small Tank with T = 20 deg C
8.0 0.0
7.0 3.0
5.0 10.0
3.0 18.1
1.0 325
0.0 43.0

(Cont)

tg1!2/H112

0.0
452
98.3
166.1

280.1

0.0
442
99.8
162.2

281.1

0.0
21.5
66.0
126.5
209.2
287.7

0.0
20.8
69.5
125.8

225.9
298.8

h/H

1.000
0.750
0.500
0.250
0.000

1.000
0.750
0.500
0.250
0.000

1.000
0.875
0.625
0.375
0.125
0.000

1.000
0.875
0.625
0.375
0.125
0.000
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Problem 7.22
Water depth, h, vs time, t

18

16 &

14

1 \ —e—Big tank, T = 57 deg C
£ 1 m Bigtank, T=20degC
= —a—Small tank, T =57 deg C

X Small tank, T=20deg C

0 20 40 60 80
t,s
Problem 7.72
Dimensionless Depth, h/H,
Vs
Dimensionless Time, t*(g/H)*0.5
1.20
1.00
0.80 —e&—Bigtank, T=57 deg C
m  Bigtank, T=20degC
3 — A — Small tank, T=57 deg C
< 0.60 X Smalltank, T =20 deg C
0.40 \\
0.20 ; AN
\\
0.00 : :
100 200 300 400 -
t*(g/H)*0.5
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7.73  Vortex Shedding from a Circular Cylinder

Objective: Under certain conditions, the flow of fluid past a circular cylinder will pro-
duce a Karman vortex street behind the cylinder. As shown in Fig. P7.73, this vortex street
consists of a set of vortices (swirls) that are shed alternately from opposite sides of the cylin-
der and then swept downstream with Lthc fluid. The purpose of this experiment is to deter-
mine the shedding frequency, @ cycles (vortices) per second, of these vortices as a function -
of the Reynolds number, Re, and to compare the measyred resylts with published data.

Equipment: Water channel with aﬁ adjustable flowrate; flow meter; set of four different
~ diameter cylinders; dye injection system; stopwatch.

Experimental Procedure: Insert a cylinder of diameter D into the holder on the bot-
tom of the water channel. Adjust the {f:on,trol valve and the downstream gate on the channel
to produce the desired flowrate, , and velocity, V. Make sure that the flow-straightening
screens (not shown in the figure) are in place to reduce unwanted turbulence in the flowing
water. Measure the width, b, of the channel and the depth, y, of the water in the channel so
that the water velocity in the channel, V = Q/(by), can be determined. Carefully adjust the
control valve on the dye injection system to inject a thin stream of dye slightly upstream of
the cylinder. By viewing down onto th top of the water channel, observe the vortex shed-
ding and measure the time, ¢, that it takes for N vortices to be shed from the cylinder. For a
given velocity, repeat the experiment for different diameter cylinders. Repeat the experiment -

using different velocities. Measure the water temperature so that the viscosity can be looked
up in Table B.1.

Calculations: For each of your data sets calculate the vortex shedding frequency,
w = N/t, which is expressed as vortices (or cycles) per second. Also calculate the dimen-
. sionless frequency called the Strouhl number, St = wD/V, and the Reynolds number,
Re = pVD/u.

Graph: On a single graph, plot the vortex shedding frequency, w, as ordinates and the
water velocity, V, as abscissas for each of the four cylinders you tested. On another graph,

plot the Strouhl number as ordinates and the Reynolds number as abscissas for each of the
four sets of data.

Dye injection

Cylinder

Karman vortex street

, : B FIGURE P7.73
S/de View

TEP View

/C;m 2’)
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Results:  On your Strouhl number verses Reynolds number graph, plot the results taken

from the literature and shown in the following table.

St Re
0 <50
0.16 100
0.18 150
0.19 200
0.20 300
0.21 400
0.21 600

0.21 800

Data: To proceed, print this page for reference when you work the problem and click here

to bring up an EXCEL page with the data for this problem.

- Solution for Problem 7.73: Vortex Shedding from a Circular Cylinder

- T,degF
' 70

. Q, ftr3/s
0.036
0.036
0.036
0.036

0.062
0.062
0.062
0.062

0.029
0.029
0.029
0.029

0.018
0.018
0.018
0.018

i o= N/t
V = Q/(by)

- St = wD/V and Re = DV/v, where

- v=1.052E-5 t"2/s

b, ft
0.50

v, ft D, ft N ts o cycles/s V,fts Re

0.82 0.0202 10.0 13.2 0.758 0.0878 169
0.82 00314 100 19.9 0.503 0.0878 263
0.82 0.0421 10.0 245 0.408 0.0878 352
0.82 0.0518 10.0 30.1 0.332 0.0878 433

0.79 0.0202 10.0 6.3 1.687 0.1570 302
0.79 0.0314 10.0 9.6 1.042 0.15670 469
0.79 0.0421 10.0 12,5 0.800 0.1670 629
0.79 0.0518 10.0 15.1 0.662 0.1570 774

0.86 0.0202 10.0 19.2 0.521 0.0674 130
0.86 0.0314 10.0 28.2 0.355 0.0674 202
0.86 0.0421 100 33.1 0.302 0.0674 270
0.86 0.0518 10.0 36.7 0.272 0.0674 333

321 0.0391 75
242 0.0391 117
192 0.0391 157
A53 0.0391 193

0.92 0.0202 10.0 31.2
092 0.0314 100 41.3
092 0.0421 100 52.2
092 0.0518 100 653

OO0 00

(Cor t) ~

St
0.174
0.180
0.196
0.196

0.204
0.208
0.215
0.219

0.156
0.165
0.189
0.209

0.165
0.194
0.206
0.203

Data from Literature ’

Re St
50 0.00
100 0.16
150 0.18
200 0.19
300 0.20
400 0.21
600 0.21
800 0.21
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Problem 7.73
Shedding Frequency, o, vs Velocity, V
1.8
1.6 ﬁ
1.4 //
1.2 :
® // —e—D =0.0202 ft
o 1.0 » - ;
2 V4 / —8—D =0.0314 ft
> / ) \ —A—D = 0.0421 ft
o 08 7~ L
S / —%—D = 0.0518 ft
06 ‘ ’,//[/X it
/ ///
0.4 - —
./‘
0.2
0.0 -
0.00 0.05 0.10 0.15 0.20
Vv, ftis
4’ Problem 7.73
. Strouhl Number, St,
| vs
& Reynolds Number, Re
0.25
0.20
0.15
@ / . ¢ Experimental
0.10 / —®— Data from literature
0.05
: 0.00 -
0 200 400 600 800 1000
; Re
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1.74
Objective:

Head Loss across a Valve

A valve in a pipeline like that shown in Fig. P7.74 acts like a variable resis-

tor in an electrical circuit. The amount of resistance or head loss across a valve depends on
the amount that the valve is open. The purpose of this experiment is to determine the head
loss characteristics of a valve by measuring the pressuyre drop, Ap, across the valve as a func-
tion of flowrate, @, and to learn how dimensional analysis can be of use in situations such

as this.

Equipment:

Air supply with flow meter; valve connected to a pipe; manometer connected

to a static pressure tap upstream of the valve; barometer; thermometer.

Experimental Procedure:

Measure the pipe diameter, D. Record the barometer read-

ing, H,y, in inches of mercury and the air temperature, 7, so that the air density can be cal-

culated by use of the perfect gas law.

from its closed position. Adjust the air supply to provide the desired flowrate, Q, of air through - -

Completely close the valve and then open it N turns

the valve. Record the manometer reading, h, so that the pressure drop, Ap, across the valve
can be determined. Repeat the measurements for various flowrates. Repeat the experiment
for various valve settings, N, ranging from barely open to wide open.

Calculations:

For each data set calculate the average velocity in the pipe, V = Q/A, where

A = wD*/4 is the pipe area. Also calculate the pressure drop across. the valve, Ap = yh,

where 7, is the specific weight of the

manometer fluid. For each data set also calculate the

loss coefficient, K;, where the head loss is given by k. = Ap/y = K V*/2g and 7 is the

specific weight of the flowing air.

Graph: On a single graph, plot the pressure drop, Ap, as ordinates and the flowrate, Q,

as abscissas for each of the valve setti

ngs, N, tested.

Results:  On another graph, plot the loss coefficient, K|, as a function of valve setting, N,

for all of the data sets.

Data:

To proceed, print this page for reference when you work the problem and click here

to bring up an EXCEL page with the data for this problem.

b O —f

(eos

Free jet

W FIGURE P7.74

72)
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(Coni)

D, in. Ham, in. Hg T, deg
0.81 287 70
h, in. Q, ft*3/s
. N =2 Turns Open Data
9.20 0.235
6.50 0.195
5.04 1 0.169
N = 3 Turns Open Data
9.40 0.479
6.33 0.386
5.01 0.341
3.62 0.289
1.92 0.214
N =4 Turns Open Data
9.35 0.827
7.65 0.767
6.01 0.691
4.32 0.578
3.24 0.504
262 0.456
1.85 0.391
0.98 0.283
N = 5 Turns Open Data
3.03 0.897
2.37 0.799
1.79 0.701
1.39 0.618
0.97 0.517
0.64 0.426
AP = Yuzo™h

K. = Ap/(pV?/2) where
V = Q/A = Q/(z*D%4)
and

P = Pan/RT where

Patm = YHg*Hatm = 847 |b/ftr3*

R = 1716 ft ib/slug deg R

T=70+460=530deg R

- Thus, p = 0.00223 slug/ft*3

F

(¢

Ap, Ib/fth2

47.8
33.8
26.2

48.9
32.9
26.1
18.8
10.0

48.6
39.8
313
225
16.8
13.6
9.6
5.1

15.8
12.3
9.3
7.2
5.0
3.3

| Solution for Problem 7.74: Head Loss across a Valve

V, ft/s

65.7
54.5
47.2

133.9
107.9
95.3
80.8

- 59.8

231.1
2143
193.1
161.5
140.8
127.4
109.3
791

250.7
2233
195.9
172.7
144.5
119.0

28.7/12 ft) = 2026 Ib/ftr2

NN

H DD DADMDMDMDN W wwww

0N ooy

K

9.95
10.21
10.54

2.45
2.54
2.57
2.59
2.50

0.816
0.777
0.752
0.772
0.762
0.752
0.723
0.731

0.225

0.222
0.218
0.217
0.217
0.211
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Problem 7.74
Pressure Drap, Ap, vs Flowrate, Q

60
o ——N= 2
§ —&|—-N=3
;: —a&—N=4
< —8—N=5
0.8 1
Q, ft*3/s
"""" Problem 7.74
Loss Coefficient, K,
vs
‘ Number of Turns Open, N
12
10
8
‘ \ ——N=2
....... 2 N=3
‘o \

k I I 4 N=4
—©—N=5
4
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7 .75 Calibration of a Rotameter

Objective: The flowrate, Q, through a rotameter can be determined from the scale read-
ing, SR, which indicates the vertical position of the float within the tapered tube of the ro-
tameter as shown in Fig. P7.75. Clearly, for a given scale reading, the flowrate depends on
the density of the flowing fluid. The purpose of this experiment is to calibrate a rotameter
so that it can be used for both water and air.

Equipment: Rotameter, air supply with a calibrated flow meter, water supply, weighing
scale, stop watch, thermometer, barometer.

Experimental Procedure: Connect the rotameter to the water supply and adjyst the
flowrate, Q, to the desired value. Record the scale reading, SR, on the rotameter and mea-
sure the flowrate by collecting a given weight, W, of water that passes through the rotame-
ter in a given time, . Repeat for several flow rates.

Connect the rotameter to the air supply and adjust the flowrate to the desired value as
indicated by the flow meter. Record the scale reading on the rotameter. Repeat for several
flowrates. Record the barometer reading, H.,,, in inches of mercury and the air temperature,
T, so that the air density can be calculated by use of the perfect gas law.

Calculations: For the water portion of the experiment, use the weight, W, and time, #,
data to determine the volumetric flowrate, @ = W/yt. The equilibrium position of the float
is a result of a balance between the fluid drag force on the float, the weight of the float, and
the buoyant force on the float. Thus, a typical dimensionless flowrate can be written as
Q/[d(p/Vg(p; — p))'*], where d is the diameter of the float, V is the volume of the float, g
is the acceleration of gravity, p is the fluid density, and p; is the float density. Determine this
dimensionless flowrate for each condition tested.

Graph: On a single graph, plot the flowrate, Q, as ordinates and scale reading, SR, as ab-
scissas for both the water and air data.

Results:  On another graph, plot the dimensionless flowrate as a function of scale reading
for both the water and air data. Note that the scale reading is a percent of full scale and,

hence, is a dimensionless quantity. Based on your results, comment on the usefulness of di-
mensional analysis.

Data: To proceed, print this page for reference when you work the problem and click here
to bring up an EXCEL page with the data for this problem.

Scale

reading | Float

N |
@ FIGURE P7.75

(CWIZ)
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Solution for Problem 7.75: Galibration of a Rotameter

(6002)

d, in. V,inA3
1.40 1.50
Air Flow Data -
SR Q, ft*3/s
14.6 0.229
215 0.321
281 0.413
33.6 0.491
39.2 0.564
448 0.644
50.2 0.714
55.9 0.798
63.1 0.888
68.6 0.973
735 1.05
76.2 1.08

Water Flow Data

SR
131
18.5
242
28.2
371
457
52.6

W, Ib
6.52
8.01
7.02
7.81
8.20
9.21
8.19

P = Pam/RT where
Patm = Yrg Hatm = 847 Ib/ftA3*

P, slug/fth3
15.1

t, s
19.9
17.7
10.4
10.1
8.4
7.5
57

R =1716 ft Ib/slug deg R
T=78+460=538degR

~ Thus, p = 0.00222 slug/ft*3

Hat"’h in' T-
29.05

Q, ftr3/s
0.0053
0.0073
0.0108
0.0124
0.0156
0.0197
0.0230

(?wff)

deg F
78

(Q/a)[p/(Vg(prp))]1/2
0.142
0.200
0.257
0.305
0.351
0.400
0.444
0.496
0.552
0.605
0.653
0.671

(Q/d)[p/(Vg(prp))]1/2
0.103
0.143
0.213
0.244
0.308
0.387
0.453

(29.05/12 ft) = 2050 Ib/ftr2
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Flowrate, Q, v:s Scale Reading, SR

Probiem 7.75

10
1
Q g
< 0.1 —o— Air
& ' —#— Water
] ke
I
0.01 - =it
0.001
10 100
SR
Problem 7.75
Dimensionless Flowrate vs Scale Reading
0.8
0.7
s 06 /
¢ 05
= —eo— Air
D 04
< —u—\Water
= 0.3 \
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€ 02
0.1
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7.76 (See “Modeling parachutes in a water tunnel” Section
7.8.1.) Flow characteristics for a 30-ft-diameter prototype para-
chute are to be determined by tests of a 1-ft-diameter model
parachute in a water tunnel. Some data collected with the model
parachute indicate a drag of 17 b when the water velocity is
4 ft/s. Use the model data to predict the drag on the prototype
parachute falling through air at 10 ft/s. Assume the drag to be
a function of the velocity, V, the fluid density, p, and the para-
chute diameter, D, |

S0V, p, D)

. | . -~y __ 2
L=F  prLTt 2 FLTT

D=1

From 7The pr 77’6’07'?04} Y4-3=( pd Ferm regw}eol,

ana a dimensional analysis yields

b L.

PYD*
where C s
between inode| and Prototype

Q& = 08._”"_.._...
PVD* Ll B

- (GIE) ) %

So  Thet

L
-,

2.38x107% du )\ /1y £

= 17 b

o eer———

Ft 3 s
gy Slugs £E
I. ?‘* J't, 9 —3-

a Constant., 777u5/ for 5/47/'/4"/.*3

2
%? (17 Ib)
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777 (See “Galloping Gertie,” Section 7.8.2.) The Tacoma
Narrows bridge failure is a dramatic example of the possible
serious effects of wind-induced vibrations. As a fluid flows
around 4 body, vortices may be created which are shed period-
ically creating an oscillating force on the body. If the frequency
of the shedding vortices coincides with the natural frequency

of the body, large displacements of the body can be induced as 0.22

was the case with the Tacoma Narrows bridge. To illustrate this

type of phenomenon, consider fluid flow past a circular ¢ylin- 0.20

der. Assume the frequency, n, of the shedding vortices behind

the cylinder is a function of the cylinder diameter, D, the fluid > 0.18

velocity, V, and the fluid kinematic viscosity, ». (a) Determine )

a suitable set of dimensionless variables for this problem. One 7 016

of the dimensionless variables should be the Strouhal number,

nD/V. (b) Some results of experiments in which the shedding 0.14

frequency of the vortices (in Hz) was measured, using a ‘

particular cylinder and Newtonian, incompressible ﬂuid, are 0.12 : i ‘ :
shown in Fig. P7.77. Is this a “universal curve” that can be used 0 ~ 100 1,000 - 10,000
to predict the shedding frequency for any cylinder placed in any Re, VDIv

fluid? Explain. (c) A certain structyral component in the form BFIGURE pP7.77

of a 1-in.-diameter, 12-ft-long rod acts as a cantilever beam with
a natural frequency of 19 Hz. Based on the data in Fig. P7.77,
estimate the wind speed that may cause the rod to osciliate at
its natural frequency. Hint: Use a trial and error solution,

(a) m=-f(D,V,'V)
m= T p=L v LT~ s LT

From 7he pPr Weorem) Y-2=22 'Ft: terms V‘e’zu/ret(,
And «a é‘//}nensm;rq/ dﬂt/y.v/.'s 5/‘-’//—‘

| MVD=¢(_$D
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—

(b) Jes . Tf e Vlriaé%/ef: of purt (a) ave correct Then

This s a “universel or general relathonsh)p
between he Strouhal number ana 7me Reynolds
humber. Tt s Valid over 7he range o+

f?eyno//.r Numbers Covered 14 The oiperimen .

(C’m ?t )
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7. 7‘7

(con't)

(€) For pn=19Hy and D=L

, i
oD _(1485)( 4 py

[
= 1z fL

]2 ih.

S}; 7 . (1)
From Fig, P177, assume I3 =021 and from
Eq.(1) (/1 4 Hy) (—,—', £+)
0.2/ = v
so That V= TsufE (514 mph)
Chek Re: R,-YP. (25¢ F)(A ) | yop,
v .57 x1p=*7 ‘5"-’-‘

Erpm Eig P777 ot
assumeAd Value
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ef Sy 0K,
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7.72

7.78 (See “Ice engineering,” Section 7.9.3.) A model study is
to be developed to determine the force exerted on bridge piers
due to floating chunks of ice in a river. The piers of interest have
square cross sections. Assume that the force, R, is a function the
pier width, b, the depth of the ice, d, the velocity of the ice, V,
the acceleration of gravity, g, the density of the ice, pi» and 2 mea-
sure of the swrength of the ice, E;, where E; has the dimensions

(@) e=F£( A,’ v,

R=F t=L d=L

FL?. (a) Based on these variables determine a suitable sét of di-
mensionless variables for this problem. (b) The prototype con-
ditions of interest include an ice thickness of 12 in. and an ice
velocity of 6 ft/s. What mode! ice thickness and velocity would
be required if the length scale is to be 1/10? (¢) If the model and
prototype ice have the same density can the model ice have the
same strength properties as that of the prototype ice? Explain.

g, A, Ei)

. - o — o gy
EF o 551_7' "/Z-:F‘L‘ti‘2 E;=FL

From The pc theorem, T-3 =4 P terms reguived, and a

dimen siona l an4/7s/3
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(b) For similarity,
by . &
A A
So That

or

\|§~

/ . =
d, = /—5'(/2//).) =/

_V

Vm . =
jaﬁ

anA Wit G = F

Vo = 122 ) )

o
(¢) For similayity .,
% 2

/oc'm MM =

E‘.

”m

7—}1“5, ‘ 2
Eclm =z (&_m?(_[ﬂ”_) =
Ec VAV

m Eq () (Yg) *

J-m
A

(1)

V :Wﬂ% = I.%%

dince Am /p( = '//0, %EL“'M # Ei ana tnodel /ée
Cannet have JSame éfrengvh pro,oerf/é.s:. Lp
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