Data Sheet for Fluid Mechanics Course

One atmosphere = 760 mm Hg = 101.3 kN = 14.7 psia

$$\rho_{H_2O} = 1000 \text{ kg m}^{-3} = 62.3 \text{ lbm/}$$
 ;

$$\rho_{Hq} = 13600 \text{ kg}^{-3} = 845 \text{ lb}_{\text{m}}/\text{ft}^3$$

$$\mu_{H_2O} = 0.001 \text{ Pa s} = 1 \text{cP} = 2.09 \text{ x } 10^{-5} \text{lb}_{\text{f.s}}/\text{ft}^2$$

Acceleration due to gravity =
$$9.81 \text{ ms}^{-2} = 32.2 \text{ fts}^{-2}$$
; $g_c = 32.2 \text{ lbm ft/lb}_f \text{ s}^2$

$$1 \text{ ft}^3 = 28.1 \text{ L} = 7.48 \text{ gal}$$

$$1hP = 0.746 \ kW = 550 \ ft \ lb_f/s$$

$$1 \text{ ft} = 12 \text{ in}, \qquad 1 \text{ in} = 2.54 \text{ mm}, \qquad 1 \text{ m} = 100 \text{ cm} = 1000 \text{ mm}$$

Universal gas constant =
$$10.73 \frac{(lbf/in^2)ft^3}{lbmol.°R}$$

;
$${}^{\circ}R = {}^{\circ}F + 460$$
 ; $K = {}^{\circ}C + 273$

$$K = {}^{\circ}C + 273$$

Equations required for problems involving pipe fittings, pipe friction, and entrance and exit losses.

1] Bernoulli's equation:

$$\Delta \left(\frac{p}{\rho} + gz + \frac{V^2}{2} \right) = + \frac{dW_{ao}}{dm} - \mathcal{F}_{tot}$$

$$\mathcal{F}_{\mathrm{tot}} = \mathcal{F}_{\mathrm{pipe\ friction}} + \mathcal{F}_{\mathrm{fittings}} + \mathcal{F}_{enlargement\ and\ contraction}$$

2] Continuity equation:

$$\dot{m} = \rho AV = \rho Q$$

3] Reynolds:

$$Re = \frac{\rho VD}{\mu} = \frac{4\rho Q}{\pi \mu D} = \frac{4\dot{m}}{\pi \mu D}$$

4] Hagen equation:

$$Q = \frac{\pi \Delta \mathcal{P} D^4}{128\mu \Delta x}$$

5] Friction Losses

$$\mathcal{F}_{Pipe} = \frac{4f\Delta xV^2}{2D}$$

Entrance losses (Contraction)

$$\mathcal{F}_{Contraction} = K \frac{V^2}{2}$$
; K from chart

Exit losses (Expansion)

$$\mathcal{F}_{\text{Expansion}} = K \frac{V^2}{2}$$
 ; $K = \left[1 - \left(\frac{D_1}{D_2}\right)^2\right]^2$

Pipe fittings

$$\mathcal{F}_{\text{Fittings}} = \frac{4f[\sum nD]V^2}{2D} = 4f[\sum n] \frac{V^2}{2}$$

6] Friction Factor

• Laminar:
$$f = \frac{16}{Re}$$

• Turbulent :
$$f = 0.001375 \left[1 + \left(20000 \frac{\epsilon}{D} + \frac{10^6}{Re} \right)^{1/3} \right]$$
 (or any other convenient method)