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Overview

» Many flow problems can only be investigated experimentally
» Few problems in fluids can be solved by analysis alone.

» The solution to many problems is achieved through the use of a combination of
analysis and experimental data

» One must know how to plan experiments.
» Correlate other experiments to a specific problem.
» Usually, the goal is to make the experiment widely applicable.

» Similitude is used to make experiments more applicable, i.e. measurements made on
one system (for example, in the laboratory) can be used to describe the behavior of
other similar systems (outside the laboratory2

» Laboratory flows are studied under carefully controlled conditions.
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Examples

Meodel of an aircraft in a wind tunnel. scale model of a section of the Mississipi River.

Model of San Antonio, Texas, used for determining wind patterns in this urban environment.
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Full and model scale

for similar triangles:
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Full and model scale

e Scales: model, and full-scale

* Selection of the model scale: governed by dimensional analysis and similarity
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Dimensional Analysis

Pipe-Flow Example: Suppose we want to investigate the Pressure Drop per Unit Length in
steady-state flow of water down a smooth, circular pipe of diameter D.

= This would be of interest to an engineer designing a pipeline
» The pressure drop per unit length that develops along a pipe as the result of friction can not be
explained analytically without the use of experimental data.
» First, we determine the important factors, or variables, that will have an effect on the pressure
drop per unit length :
PP ¢ Ap; = f(D, p, . V)
D is the diameter of the pipe, p is the density of the fluid, p is the viscosity of the fluid, and V is

the flow velocity.

So, how do we approach this problem?

» To perform the experiments in a meaningful and systematic manner, it would be necessary to
change one of the variables, such as the velocity, while holding all others constant, and
measure the corresponding pressure drop
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Dimensional Analysis

Fortunately, there is a simpler approach: Dimensionless Groups

The original list of variables can be collected into two dimensionless groups.
D Ap, pVD
()

Now instead of working with 5 variables, there are only two.

DAp,
2

The results of the experiment could then be
represented by a single, universal curve

pvD
H

» The experiments would consist of varying the independent variable and determining the
dependent variable which is related to the pressure drop.

» Now, the curve is universal for any smooth walled, laminar pipe flow.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan
Tel. +962 6 535 5000 | 22888




Dimensional Analysis

» The basis for this simplification lies in a consideration of the dimensions of the variables

Involved.
Dimensions Associated with Common Physical Quantities ; =
— . FLT MLT
i::;;:cm :‘1‘:{;3{'“1 System System
Acceleration LT LT-? Moment of inertia (mass) FLT® MIL?
Anole Fopore MOLOTY Momentum FT MLT™!

N . - -1 13
Angular acceleration T T2 Power FLT1 MLT i
Angular velocity T-! T-! Pressure FL™ ML™'T?
Area i Iz Iz Specific heat L*T20! rr-2o-!
Density FL-4T? ML-? Specific weight FL-* ML-2T-2
Energx: FL MIAT2 Strain Forome ML
Force ] F -‘l*ILT‘f Stress FL™? ML-T-2
Frequency T-! -]r— ! Surface tension FL™! M7
Heat il FL MIAT-2 Temperature (5] [&]
Leneth L I Time T T
Ma i FL-'T? M Torque FL MIAT-2

ass } S . o
Maodulus of elasticity FL-? ML-'T-? \f,i.mul.} . LI_1 L _1pa1
Moment of a force FL MIAT- Wiscosity (dynamic) FL*T ML'T
Moment of inertia (area) It Iz Wiscosity (kinematic) LTt rrt

Volume L? I?
Work FL MLT™®
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Dimensional Analysis

» In pipe flow system
Dimensions are Mass (M), Length (L), Time (T), Force (F or MLT?)

The basic dimensions are Mass (M), Length (L), Time (T), i.e. 3 basic dimensions

Then, we check our dimensionless groups

V=LT"! Substituting, we see no dimensions on our two variables:
. -2
w=FL °T D Ap, . L(F/L) = pOp070
Ap,=FL™ pV:  (FLT?(LT )’
D=L
p = FL™'T"? pVD - (FL™'T*)(LT)(L) = p 0700
m (FL™*T)

* Not only have we reduced the number of variables from five fo two, but the dimensionless
plot is independent of the system of units used.

So, how do we know what groups of dimensionless variables to form?
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Dimensional Analysis

The purpose dimensional analysis

e Want to determine which variables to study:.

e Want to determine the parameters that

significantly affect the system.

e Reduce the cost/effort of experimental analysis
by studying the most important groups of

variables.
e The ideas can be used for any physical system.
e This will help in the design of scale test models

» How many dimensionless products are required to replace the original list of variables?
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Buckingham Pi Theorem

Buckingham Pi Theorem is a systematic way of forming dimensionless groups:

If an equation involving k variables is dimensionally homogeneous, it can be
reduced to a relationship among k — r independent dimensionless products,
where r is the minimum number of reference dimensions required to describe
the variables.

Edgar Buckingham [ 1867-1040)

The dimensionless products are referred to as “pi terms”.

Requires that equation have dimensional homogeneity:

uy = f(up, Uz, . .., Uy) Dimensions on the left side = dimensions on the right side

Then if pi terms are formed, they are dimensionless products one each side.
I, = (I, 15, ..., 1T, )

*The required number of pi terms is fewer than the original number of variables by r, where r is
the minimum number of reference dimensions needed to describe the original set of variables (M,
L, T, or F).
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Buckingham Pi Theorem

Systematic Approach: Example Pipe Flow

Step 1. List all the independent variables that are involved in the problem: AP({ = f (D, P, MK, V)

variables (including dimensional and non dimensional constants ) will include those that are necessary to describe the
geometry of the system (such as a pipe diameter), to define any fluid properties (such as a fluid viscosity), and to indicate
external effects that influence the system (such as a driving pressure drop per unit length).

Step 2. Express each of the variables in terms of basic dimensions:
Apy=FL> v=[LT"" p=FL'T> w=FLT p=L
The basic dimensions are F.L,T or M,L,T, noting F = MLT?, 3 total

Step 3. Determine the required number of pi terms:

Then the number of pi terms are the number of variables, 5 minus the number of basic

dimensions, 3. So there should be two pi terms for this case.
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Buckingham Pi Theorem

Step 4. Select a number of repeating variables, where the number required is equal
to the number of reference dimensions. selecting from the original list of

variables several of which can be

h hree in ndent variabl he r ing variabl
We choose three independent variables as the repeating variables, combined with cach of the remaining

there can be more than one set of repeating variables. variables to form a pi term

Repeating variables: D, V, and p
» We note the these three variables by themselves are dimensionally independent; you can not

form a dimensionless group with them alone.
» All of the required reference dimensions must be included within the group of repeating variables

Step 5. Form a pi term by multiplying one of the nonrepeating variables by the product of
repeating variables each raised to an exponent that will make the combination dimensionless.
The first group chosen usually includes the dependent variable.

Hl — AP{«DaVb pc
Product should be dimensionless: (FL)L)Y(LT "Y(FL™*T?)° = F°L°T°

So, we need to solve for the exponent values.
Each 7 group is a function the governing ot repeating variables plus one of the remaining variables.
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Buckingham Pi Theorem

Step 5 (continued). l1+c¢c=0 (for F)
—3+a+b—4=0 (for L)
—b+2c=0 (for 7)

Solving the set of algebraic equations, we obtain: a=1,b=-2,c=-1:
pV
L is a remaining nonrepeating variable, so we can form another group:
IT, = uD"V’ p¢
(FL_QT)(L)"‘(LT_ 1 )b(FL_4T2)C = pO07070
Solving,a=-1,b=-1,and ¢ = -1

73
> [I,=——
> DVp
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Buckingham Pi Theorem

Step 6. Repeat Step 5. for each of the remaining repeating variables.

We could have chosen D, V and p as another repeating group (later).
Step 7. Check all the resulting pi terms to make sure they are dimensionless.

_ApD  (FLT)L)

m, = 2P - poropo ApeD . (MLTH)(L)
LoV (FLTTHT) M=% = ey~ ML
or alternatively. P {* :"[ )
-2
. = Ko (FL™7T) = po7o70 . [T (ML_'T_') . OLOT"
2 —1 —4r2 , = = = M
DVp  (L)LT)(FL™'T7) * DVp  (L)LT ML)

Step 8. Express the final form as relationship among the pi terms and think about what

it means. [T, = ¢(I1,, I5, ..., II,_,)
For our case, Ap.D _ 3 (’u) or D Ap, — (@)
pV? DVp pV? I
N\
Pressure drop depends on the Reynolds Number. Reynolds Number
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Choosing variables

One of the most important aspects of dimensional analysis is choosing the

variables important to the flow, however, this can also prove difficult.

We do not want to choose so many variables that the problem becomes cumbersome.

» Often we use engineering simplifications to obtain first order results sacrificing some accuracy,
but making the study more tangible.

» Most variables fall in to the categories of geometry, material property, and external effects:

» Geometry: lengths and angles, usually very important and obvious variables.

» Material Properties: bind the relationship between external effects and the fluid response.
Viscosity, and density of the fluid.

» External Effects: Denotes a variable that produces a change in the system, pressures, velocity,

or gravity.
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Choosing variables

In summary, the following points should be considered in the selection of variables:

1. Clearly define the problem. What is the main variable of interest (the dependent vari-
able)?

2. Consider the basic laws that govern the phenomenon. Even a crude theory that de-
scribes the essential aspects of the system may be helpful.

3. Start the variable selection process by grouping the variables into three broad classes:
geometry, material properties, and external effects.

4. Consider other variables that may not fall into one of the above categories. For exam-
ple, time will be an important variable if any of the variables are time dependent.

5. Be sure to include all quantities that enter the problem even though some of them may
be held constant (e.g., the acceleration of gravity, g). For a dimensional analysis it is
the dimensions of the quantities that are important—not specific values!

6. Make sure that all variables are independent. Look for relationships among subsets of
the variables.
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In Summary

1¥" 7t theorem:

A relationship between m variables (physical properties such as velocity, density etc.) can be expressed as
a relationship between m-n non-dimensional groups of variables (called © groups). where n is the number
of fundamental dimensions (such as mass, length and time) required to express the variables.

d
2" 1t theorem

Each 1 group is a function of n governing or repeating variables plus one of the remaining variables.

Repeating variables are those which we think will appear in all or most of the  groups. and are a
influence in the problem.

Some rules which should be followed are

qﬂd
i

1. From the 2" theorem there can be n ( = 3) repeating variables.

i1. When combined. these repeating variables variable must contain all of dimensions (M. L. T)
(That is not to say that each must contain M.L and T).

iil. A combination of the repeating variables must not form a dimensionless group.
iv. The repeating variables do not have to appear in all T groups.

v. The repeating variables should be chosen to be measurable in an experimental investigation. They
should be of major interest to the designer. For example, pipe diameter (dimension L) is more useful
and measurable than roughness height (also dimension L).

Uniqueness of Pi Terms

Now, back to our example of pressure drop, but choose a different repeating
group (D, V, p).

APD”  The other pi ins th
If we evaluate, we find v ¢ other p1 term remains the same.
i
Ap.D’ _ (pVD)

Vi "\ u
But, we note that the L.H.S, is simply what we had before multiplied by the Reynolds
Number. (AP(D)([JVD) APEDZ

pV? % Vi

There is not a unique set of pi terms, but rather a set number of pi terms. In this case there

are always two.

If we have three pi terms, we can form another by multiplying IT, = ¢(I1,, II5)
r— a1T1bh
1, =I5 Il == I, = ¢,(I15 IT5) or I} = (11, IT5)

*Often the set of pi terms chosen is based on previous flow analysis.
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Examples

A thin rectangular plate having a width w and a height £ is located so that it is normal to a
moving stream of fluid. Assume the drag, "/, that the fluid exerts on the plate is a function
of w and h, the fluid viscosity and density, w and p, respectively, and the velocity V of the
fluid approaching the plate. Determine a suitable set of pi terms to study this problem
experimentally.
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Examples Cont.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan
Tel. +962 6 535 5000 | 22888




Examples Cont.
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Examples Cont.
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Examples

» Consider the equation of motion describing the elevation z of an object falling by gravity
through a vacuum (no air drag),
The initial location of the object is Zp and its initial velocity is Wy
in the z-direction.

g

. . d & . .
Equation of motion: = —p w = component of velocity
dt- ) in the z-direction

’ 7 = vertical distance

£ = gravitational
acceleration in the
negative Z-direction

) ) R . 2
Dimensional result: 2= Zo T Wol — 2 gf
2
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Dimensionless Groups

A useful physical interpretation can often be given to dimensionless groups:

Dimensionless Interpretation (Index of  Types of
Groups Name Force Ratio Indicated) Applications
pvE Reynolds number, Re inertia force Generally of importance in
u Viscous force all types of fluid dynamics
problems
1% Froude number, Fr inertia force Flow with a free surface
Vel gravilational force
P Euler number, Eu pressure force Problems in which pressure,
pVZ inertia foree or pressure differences, are
of interest
pV? Cauchy number.” Ca inertia force Flows in which the
E, compressibility force f_:omprr:smhlhly of the fluid
i is important
Vv Mach number,* Ma inertia force Flows in which the
c compressibility force compressibility of the fluid
in important
wf Strouhal number, St inertia (local) force Unsteady flow with a
v inertia (convective) force characteristic frequency of
oscillation
p'ifzf Weber number, We inertia force Problems in which surface
Ch ¢ surface tension force tension Is important
Tel “The Cauchy number and the Mach number are related and either can be used as an index of the relative effects of inertia and com-

Some Commeon Variables and Dimensionless Groups in Fluid Mechanics

Variables: Acceleration of gravity, g; Bulk modulus, E, ; Characteristic length, {; Density, p;
Frequency of oscillating flow, @; Pressure, p (or Ap); Speed of sound, ¢; Surface tension, o;
Velocity, V; Viscosity, p

pressibility. See accompanying discussion.

Dimensionless Groups

pVE

Re = —

Reynolds Number: “

Osborne Reynolds, a British Engineer demonstrated that the Reynolds Number could
be used as a criterion to distinguish laminar and turbulent flow.

Re << 1, Viscous forces dominate, we neglect inertial effects, creeping flows.

Re large, inertial effects dominate and we neglect viscosity (not turbulent though).
Osborne Reynolds
(1842 - 1912) E Vv
Froude Number: r=
Vgl

William Froude, a British civil engineer, mathematician, and naval architect who
pioneered the use of towing tanks to study ship design.

The Froude number is the only dimensionless group that contains acceleration of
gravity, thus indicating the weight of the fluid is important in these flows.

Important to flows that include waves around ships, flows through river or open

conduits.

William Froude
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Dimensionless Groups

P
Euler Number: Eu = —
pV

Leonhard Euler was a Swiss mathematician who pioneered the work between pressure and

flow.
Ratio of pressure forces to inertial forces. Sometime called the pressure coefficient.

Leonhard Euler Euler number is used in flows where pressure differences may play a crucial role.

(1707 - 1783)

V
Mach Number: Ma = PO is the speed of sound

Ernst Mach as Austrian physicist and a philosopher.

The number is important in flows in which

there is compressibility.

Ernst Mach
(1838 —1916)
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Dimensionless Groups

wl

Strouhal Number: St = v

Vincenz Strouhal studied “singing wires” which result from vortex shedding.

This dimensionless group is important in unsteady, oscillating flow
el problems with some frequency of oscillation .
Vincenz Strouhal

(1850 — 1922)

Measure of unsteady inertial forces to steady inertial forces.

In certain Reynolds number ranges, a periodic flow will develop downstream
from a cylinder placed in a moving fluid due to a regular pattern of vortices that

are shed from the body.
This series of trailing vortices are known as Karman vortex trail named after

Theodor von Karman, a famous fluid mechanician.

The oscillating flow is created a a discrete frequency such that Strouhaul numbers

can closely be correlated to Reynolds numbers.
Theodor von Karman

(1881 — 1963)
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Dimensionless Groups

1. Similarity of molecular transport processes

Pr =v/a = (pey/A) = Prandtl number
Se =v/D = pu/(pD) = Schmidt number

2. Similarity of flow processes

Re = LU /v = Reynolds number

Fr = U?g/L = Froude number

Ma = U/e = Mach number

Euw= AP/pll* = Euler number

St = Lf /U = Strouhal number, f is the frequency
Gr = L*g3p* AT /u? = Grashof number

3. Similarity of heat transfer processes

Pe = RePr = UL /a = Peclet number
E. =U?/c, AT = Eckert number

4. Similarity of integral quantities of heat and mass transfer

Nu = aL /M = Nusselt number
Sh = 3L /D) = Sherwood number

where o 15 introdueced as heat transfer coefficient and & as mass transfer
coefficient.

1CLl. ' UL VU IOV JUVUVY | payaielele] -

Dimensionless Groups

If only one pi variable exists in a fluid phenomenon, the functional relationship must be a
constant. II,=C

The constant must be determine from experiment.

If we have two pi terms, we must be careful not to over extend the range of

applicability, but the relationship can be presented pretty easily graphically:

[T, = ¢(II,) . =

’,
\ﬂ. -’ 2
L—Valld range

I,
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Dimensionless Groups

If we have three pi groups, we can represent the data as a series of curves, however,
as the number of pi terms increase the problem becomes less tractable, and we may
resort to modeling specific characteristics.

3 = C; (constant)
H3 = C3
3 =Cy
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Similitude

Often we want to use models to predict real flow phenomenon.

We obtain similarity between a model and a prototype by equating pi terms.
In these terms we must have geometric, kinematic, and dynamic similarity.

Geometric similarity: A model and a prototype are geometrically similar if and only if

all body dimensions in all three coordinates have the same linear scale ratio.

€ i — elm - €2m All angles are preserved.

¢, o 1{)1 fz All flow directions are the same.

Orientations must be the same.
*Things that must be considered that are over-looked: roughness, scale of fasteners

protruding.
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Similitude

Geometric Similarity: Scale 1/10t%

Homologous
points
40m
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Similitude

Kinematic Similarity: Same length scale ratio and same time-scale ratio.

This requires equivalence of dimensionless groups:

Reynolds Number, Froude Number, Mach numbers, etc.
For a flow in which Froude Number and Reynolds Number is important:

Length scale: v v v 7
Froude Number similarity: " = => — =,/—=VA
Veub, Vil v ¢ '

wVln _ pVE — Vi _ Hm p ¢
P P Vi _ b P
!‘Lm I'L V !‘L plm €m

tm — Im/vm _
Time scale: i = | /V —\/Z

Reynolds Number similarity:

Dynamic Similarity: the same length scale, time-scale, and force scale is required.
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Some Typical Model Studies
Flow Through Closed Conduits

» Include pipe flow and flow through valves, fittings, and metering devices. Although the

conduits are often circular, they could have other shapes as well and may contain expansions
or contractions.

» Since there are no fluid interfaces or free surfaces, the dominant forces are inertial and
viscous.

» Geometric similarity between model and prototype must be maintained
» The Reynolds number is an important similarity parameter

{,-sp‘r"{)
D dent pi t = —,—.
ependent pi term d:r({_{_ "

the requirement of geometric similarity

f im t; Ep E
U t L {

or im _ _ = A
{
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Some Typical Model Studies

additional :-}imilélrit}* requircx_ncnt
PnVnlm _ pVL
Hom H

» With these similarity requirements satisfied, it follows that the dependent pi term will be
equal in model and prototype

Ap
pV?

I1, =

The prototype pressure drop would then be

s =2 () 2
P PHJ V."i'f Pm‘
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Some Typical Model Studies

Flow Around Immersed Bodies

» Include flow around aircraft, automobiles, golf balls, and buildings.
» The dependent variable of interest for this type of problem is the drag developed on the body,
» Geometric and Reynolds number similarity is required.

» Since there are no fluid interfaces, surface tension and therefore the Weber number is not
important.

» Also, gravity will not affect the flow patterns, so the Froude number need not be considered.

the dependent pi term would usually be
&
C,= T = .
D %F" V22

Cp. drag coefficient,
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Some Typical Model Studies

geometric similarity

Reynolds number similarity

P.ri'r]'fm{ru — PV{
o p

[f these conditions are met, then

'.-_I" : rru

L1202 1 w252
Epi' { 1P”]L;f” m

1= 2(5) ()
Oy =—|— ) |=]
Pu\Vy/) \E) "

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan
Tel. +962 6 535 5000 | 22888

or




Some Typical Model Studies

Flow with a Free Surface

» Flows in canals, rivers, spillways, and stilling basins, as well as flow around ships,
are all examples of flow phenomena involving a free surface.

» Both gravitational and inertial forces are important and, therefore, the Froude

number becomes an important similarity parameter.

» Since there is a free surface with a liquid-air interface, forces due to surface tension
may be significant, and

» The Weber number becomes another similarity parameter that needs to be
considered along with the Reynolds number.

» Geometric variables will obviously still be important.

€ e pvV€ Vv Vi
Dependent pi term = ¢ (— £ ep )

T L "'» g { a
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Some Typical Model Studies

Froude number similarity
y V., V

Vg, Vgl

Reynolds number similarity OVl m pVi
Hom I
Weber number, We pVi Vit
o o

geometric similarity

» In all previous cases, if Ma number is very high (compressible flow, then Ma
similarity is necessary)
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Example

The aerodynamic drag of a new sports car is to be predicted at a speed of
50.0 mi/h at an air temperature of 25°C. Automotive engineers build a one-
fifth scale model of the car to test in a wind tunnel. It is winter and the wind
tunnel is located in an unheated building; the temperature of the wind tunnel
air is only about 5°C. Determine how fast the engineers should run the wind
tunnel in order to achieve similarity between the model and the prototype.

Chemical Engineering Department | University of Jordan | Amman 11942, Jordan g
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Examples Cont.
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Example

» Suppose the engineers run the wind tunnel at 221 mi/h to achieve similarity between the
model and the prototype. The aerodynamic drag force on the model car is measured with a
drag balance. Several drag readings are recorded, and the average drag force on the
model is 21.2 Ibf. Predict the aerodynamic drag force on the prototype (at 50 mi/h and 25°C).
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Example

A certain spillway for a dam is 20 m wide and is designed to carry 125 m’/s at flood stage.
A 1: 15 model is constructed to study the flow characteristics through the spillway. Deter-
mine the required model width and flowrate. What operating time for the model corresponds

to a 24-hr period in the prototype? The effects of surface tension and viscosity are to be
neglected.
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Example

EXAMPLE 7-11 Model Lock and River

In the late 1990s the U.5. Army Corps of Engineers designed an experiment
to model the flow of the Tennessee River downstream of the Kentucky Lock
and Dam (Fig. /-43). Because of laboratory space restrictions, they built a
scale model with a length scale factor of L,/L, = 1/100. Suggest a liquid
that would be appropriate for the experiment.

Properties For water at atmospheric pressure and at T = 20°C, the pro-
totype kinematic viscosity is v, = 1.002 x 10-% m?/s.
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Governing Equation Insights

Consider the 2D governing equations:
Continuity: U n dv
ox  dy

2D Navier-Stokes Equations:
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For a given flow, there may be characteristic or reference length, velocity, pressure,
and time scales:
V, a reference pressure, p,, a reference length, €, and a reference time, 7

We can use these reference parameter to non-dimensionlize our independent, and
dependent variables: u, v, p, and x, y, t.
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Governing Equation Insights

Are non-dimensional variables are starred below:

u v , P
u*=_ rU*=_ p>.‘==_
% Vv Po

X y t

k= * = t*:—

S ;

Now, we can introduce these variables into the governing equations:
ou _ dVu* ox*  Vou*
For example: ox - ox*  ox Y’ O

Yu_V a (au*)ﬁx* _ Vo

o €oxt\axt) ax €2 ax*?
u®  ov*
Non-Dimensional Continuity: " - =20
ox” ay*
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Governing Equation Insights

Non-Dimensional Momentum:

e 2 % 4 # 2% 2k
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X y

Fie Fy, , :
| po|9p* uV|fovr gk
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—_— —

F}; = inertia (local) force
F,. = inertia (convective) force
F, = pressure force.

F = gravitational force

Fy = viscous force
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Governing Equation Insights

Non-Dimensional Momentum: Divide by pV/¢
! * # # Iy 2, % 2
X-momentum: [L]HL+ M*HL+ i ou = —[ p“)}di + { K }(8 Ho + du )
TV | ar* ax Ay pV? | ax* pVe [\ ox*?  gy*?
) £ ] av* dv* dv*
y-momentum: — | — 4 pF—— 4+ p¥
TV | or* ax* dy*

2]z [ [ )
pV2 ] ay* v? pVe | \ax*?  gy*?

Then, £/7V is a form of Strouhal
p[,/pvz the Euler number

g£/V? the reciprocal of the square of the Froude number.

i/ pVE the reciprocal of the Reynolds number.

The governing equations then can provide insight into important dimensionless

parameters.
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