

University of Jordan Chemical Engineering Department 905509 Statistical Quality Control

Review of Test of Hypothesis

Dr. Ali Kh. Al-Matar <u>aalmatar@ju.edu.jo</u>

Outline

- What is a hypothesis
- Procedure for test of hypothesis
- Types of errors
- Testing of hypothesis

What is a Hypothesis?

- Hypothesis is a statement about a population developed for the purpose of testing.
 - In the legal system; a person is innocent till proven guilty. The judge and/or the jury subject this hypothesis to verification by reviewing the evidence and testimony before reaching a verdict.
 - A doctor observes certain symptoms on his/her patient and orders certain diagnostic tests and follow up with treatment.

SQC-04: Review of Test of Hypothesis

©Dr. Ali Khalaf Al-Matar, aalmatar@ju.edu.jo

What is Hypothesis Testing?

- Hypothesis Testing is a (systematic) procedure based on sample evidence and probability theory to determine whether the hypothesis is a reasonable statement.
 - Hypothesis testing does not provide proof that something is true in a mathematical sense.
 - It is in a sense close to the "Proof beyond reasonable doubt" used in the legal system.
 - From a philosophy of science point of view one can never prove anything, we can only disprove things.

SQC-04: Review of Test of Hypothesis

©Dr. Ali Khalaf Al-Matar, aalmatar@iu.edu.io

Steps for Hypothesis Testing

- 5. Do not reject H₀ or reject H₀ and accept H₁
- 4. Formulate a Decision Rule
- 3. Identify (Compute) the test Statistic
- 2. Select a level of Significance
- 1. State the null (H_0) and alternate (H_1) hypotheses

SQC-04: Review of Test of Hypothesis

©Dr. Ali Khalaf Al-Matar, aalmatar@ju.edu.jo

1. State the Null (H_0) and Alternate (H_1) Hypotheses

- Null hypothesis is a statement about the value of a population parameter.
 - H stands for Hypothesis while the 0 stands for "no difference".
 - The null hypothesis is a statement that is not rejected if our sample data fail to provide convincing evidence that it is false.
 - Failing to reject the null hypothesis does not prove that H₀ is true, it means we have failed to disprove H₀.
 - To prove without any doubt that the null hypothesis is true, the population parameter would have to be known, which is not usually feasible.
- Alternate hypothesis is a statement that is accepted if the sample data provide enough evidence that the null hypothesis is false.
- Remember always that the null hypothesis will always contain the equal sign. We turn to the alternate hypothesis only if we prove the null hypothesis to be untrue.

SQC-04: Review of Test of Hypothesis

©Dr. Ali Khalaf Al-Matar, aalmatar@ju.edu.jo

2. Select a Level of Significance

- Level of significance (level of risk) is the probability of rejecting the null hypothesis when it is true.
 - 0.05 level is used traditionally for consumer research projects,
 - 0.01 level is used traditionally for quality assurance
 - 0.10 level is used traditionally for political polling
- You as a researcher need to decide what is the level of significance before formulating the decision rule.

SQC-04: Review of Test of Hypothesis

©Dr. Ali Khalaf Al-Matar, aalmatar@ju.edu.jo

Type I and II Errors

- Type I Error
 - Occurs when rejecting the null hypothesis, H_0 , when it is true.
 - The probability of committing a type I error is denoted α . Called "Producer's Risk".
 - Probability that a good lot will be rejected.
 - Probability of sending an innocent person to jail.
- Type II Error
 - Occurs when accepting the null hypothesis, H₀, when it is false.
 - The probability of committing a type II error is denoted β. Called "Consumer's Risk".
 - Probability that a poor lot will be accepted.
 - Probability of setting a person free al though he is guilty.

SQC-04: Review of Test of Hypothesis

©Dr. Ali Khalaf Al-Matar, aalmatar@ju.edu.jo

Types of Errors

SQC-04: Review of Test of Hypothesis

©Dr. Ali Khalaf Al-Matar, aalmatar@ju.edu.jo

Power of a Test

- The **Power** of a test of hypothesis is given by (1β)
- (1β) is the probability of
 - Correctly rejecting the null hypothesis, or
 - the probability of rejecting the null hypothesis when the alternative is true.

SQC-04: Review of Test of Hypothesis

©Dr. Ali Khalaf Al-Matar, aalmatar@ju.edu.jo

3. Compute the Test Statistic

- Tests statistic is a value, determined from sample information, used to determine whether to reject the null hypothesis.
 - Many statistics such as z, t, F and χ^2
 - z distribution as a test statistic is used to test for the mean (μ). The z value is based on the sampling distribution of X, which is normally distributed.

$$z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

SQC-04: Review of Test of Hypothesis

CDr. Ali Khalaf Al-Matar, aalmatar@ju.edu.jo

1

4. Formulate the Decision Rule

- Decision Rule is a statement of the conditions under which the null hypothesis is rejected and the conditions under which it is not rejected.
- Critical value is the dividing point between the region where the null hypothesis is rejected and the region where it is not rejected

SQC-04: Review of Test of Hypothesis

Dr. Ali Khalaf Al-Matar, <u>aalmatar@ju.edu.j</u>o

SQC-04: Review of Test of Hypothesis

©Dr. Ali Khalaf Al-Matar, aalmatar@ju.edu.jo

1.

5. Make a Decision

- Depending on the z value of the sample either reject the null hypothesis or do not reject it.
- To phrase the "acceptance" of the null hypothesis, many researchers tend to use
 - Do not reject H_0 .
 - We fail to reject H_0 .
 - \blacksquare The sample results do not allow us to reject H_0 .

SQC-04: Review of Test of Hypothesis

©Dr. Ali Khalaf Al-Matar, aalmatar@ju.edu.j

One-Tailed and Two-Tailed Tests

■ If H₁ specifies a direction, the test is onetailed, otherwise it is two-tailed.

SQC-04: Review of Test of Hypothesis

©Dr. Ali Khalaf Al-Matar, aalmatar@ju.edu.jo

©Dr. Ali Khalaf Al-Matar, aalmatar@ju.edu.jo

Test on the Mean with Known σ

Null hypothesis H_0 : $\mu = \mu_0$

Test Statistic value: $z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$

Alternative hypothesis Rejection region for level α test

$$H_1: \mu > \mu_0$$
 $z \ge z_\alpha$

$$z \geq z_{\alpha}$$

$$H_1: \mu < \mu_0$$
 $z \leq -z_\alpha$

$$z \leq -z_{\alpha}$$

$$H_1: \mu \neq \mu_0$$

$$H_1: \mu \neq \mu_0$$
 either $z \geq z_{\alpha/2}$ or $z \leq -z_{\alpha/2}$

SQC-04: Review of Test of Hypothesis

CDr. Ali Khalaf Al-Matar, aalmatar@ju.edu.jo

Test on the Mean with Large Sample

■ Replace population σ by the sample s (n>30).

Null hypothesis H_0 : $\mu = \mu_0$

Test Statistic value: $z = \frac{\overline{X} - \mu_0}{c_1 / n}$

Alternative hypothesis Rejection region for level α test

$$H_1: \mu > \mu_0$$
 $z \ge z_\alpha$

$$z \geq z_{\alpha}$$

$$H_1: \mu < \mu_0$$
 $z \leq -z_\alpha$

$$z \leq -z$$

$$H_1: \mu \neq \mu_0$$

$$H_1: \mu \neq \mu_0$$
 either $z \geq z_{\alpha/2}$ or $z \leq -z_{\alpha/2}$

Test on the Mean with Small Sample

■ Normal distribution of the sample is no longer valid. The t-distribution is used instead

Null hypothesis H_0 : $\mu = \mu_0$

Test Statistic value:
$$t = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}$$

Alternative hypothesis Rejection region for level α test

$$H_1: \mu > \mu_0$$
 $t \ge t_{\alpha, n-1}$

$$t \ge t_{\alpha,n-1}$$

$$H_1: \mu < \mu_0 \qquad \qquad t \le -t_{\alpha, n-1}$$

$$t \leq -t_{\alpha,n-1}$$

$$H_1: \mu \neq \mu$$

$$H_1: \mu \neq \mu_0$$
 either $t \ge t_{\alpha/2, n-1}$ or $t \le -t_{\alpha/2, n-1}$

SQC-04: Review of Test of Hypothesis

©Dr. Ali Khalaf Al-Matar, aalmatar@ju.edu.jo

Test on Proportions: Large Sample

■ Valid for $np_0 \ge 5$ and $n(1-p_0) \ge 5$

Null hypothesis H_0 : $p = p_0$

Test Statistic value:
$$z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

Alternative hypothesis Rejection region for level α test

$$H_1: p > p_0$$
 $z \ge z_\alpha$

$$z \geq z_{\alpha}$$

$$H_1: p < p_0$$
 $z \le -z_\alpha$

$$z_{\cdot} \leq -z_{\cdot}$$

$$H_1: p \neq p_0$$

$$H_1: p \neq p_0 \qquad \text{either } z \geq z_{\alpha/2} \text{ or } z \leq -z_{\alpha/2}$$

$$\text{SQC-04: Review of Test of Hypothesis}$$

Test on Proportions: Small Sample

■ Based directly on the binomial distribution.

SQC-04: Review of Test of Hypothesis

©Dr. Ali Khalaf Al-Matar, aalmatar@ju.edu.jo

2

P-value

- The P-value is the smallest level of significance at which H₀ would be rejected when a specified test procedure is used on a given data set.
- Once the P-value has been determined, the conclusions at any particular level α results from comparing the P-value to α :
 - P-value $\leq \alpha \Rightarrow$ reject H_0 at level α .
 - P-value $> \alpha \Rightarrow$ do not reject H_0 at level α .

SQC-04: Review of Test of Hypothesis

P-value Rules

- If the P-value is less than
 - 0.10, we have **some** evidence that H_0 is not true.
 - \bullet 0.05, we have **strong** evidence that H_0 is not true.
 - 0.01, we have **very strong** evidence that H_0 is not true.
 - 0.001, we have **extremely strong** evidence that H_0 is not true.

SQC-04: Review of Test of Hypothesis

©Dr. Ali Khalaf Al-Matar, aalmatar@ju.edu.jo

23

■ The output voltage of a power supply is assumed to be normally distributed. 16 observations are taken at random.

10.35	9.3	10	9.96
11.65	12	11.25	9.58
11.54	9.95	10.28	8.37
10.44	9.25	9.38	10.85

Test the hypothesis that the mean voltage is 12V against a two-sided alternative that using α =0.05.

SQC-04: Review of Test of Hypothesis

- Read about
 - Pooled t-test
 - Paired t-test
 - ANOVA

SQC-04: Review of Test of Hypothesis

©Dr. Ali Khalaf Al-Matar, aalmatar@ju.edu.jo

2

Calculation of probability of Type II error

Assume the test of interest is

$$H_0$$
: $\mu = \mu_0$

$$H_1: \mu \neq \mu_0$$

■ P(Type II Error) is found to be

$$\beta = \Phi \left(Z_{\frac{\alpha}{2}} - \frac{\delta \sqrt{n}}{\sigma} \right) - \Phi \left(-Z_{\frac{\alpha}{2}} - \frac{\delta \sqrt{n}}{\sigma} \right)$$

■ The Power of the test is then $1 - \beta$

SQC-04: Review of Test of Hypothesis

Operating Characteristic Curves

- Operating Characteristic (OC) curve is a graph representing the relationship between β , α , δ and n.
- OC curves are useful in determining how large a sample is required to detect a specified difference with a particular probability.
- Calculate probability of Type II error by

SQC-04: Review of Test of Hypothesis

©Dr. Ali Khalaf Al-Matar, aalmatar@ju.edu.jo