

The University of Jordan School of Engineering Chemical Engineering Department

(ab(2) sedion 2

Chemical Engineering Laboratory (II) 0915461

Experiment Number (6)

Jaw Crusher

Type of the report: short report

Instructor: prof. Motasem Saidan

Performing Date: 28-12-2022

Submission Date: 41-2023

00		/
	U	6

Name	II	ber	
Laila Alameri	The state of the s		
Noor Ghassan	in section		
Saja AlQaisi	7.	-	
Sara Albanna			1. 1
Taleen Alhawarneh			

Almost all process industries employ size reduction or comminution to produce solid particles of desired shape, size or size ranges, to separate unwanted particles effectively, to improve handling characteristics, and to increase of the surface area of solid materials used especially for chemical reactions or unit operations such as leaching, drying, adsorption and the like. Size reduction can be carried out in stages using different types of equipment out on the characteristics of the feed and the product to be obtained. These equipment vary in their mechanical action to give different kinds of motions and force that would result in the fracturing of the solid particles into smaller sizes.

In this experiment have been shown comminution behavior of oil shale using Jaw crusher and the effect of specific factor such initial material size on power requirements. In experiment, Jaw crusher have been used. Used to reduce the run-of-mine ore down to a size suitable a then we used a sieve shaker. In result the bigger particles need more power for crushing and

Table of content

Abstract	2
Results	
Discussion	4
Conclusion	9
Conclusion	10
Appendix	12

Table of tables

Table (1): Properties for crushing coarse size particles and power required	4
Table (2): Cumulative distribution for coarse size	4
Table (3): Properties for crushing intermediate size particles and power required	5
Table (4): Cumulative distribution for intermediate size.	
Table (5): Properties for crushing fine size particles and power required	
Table (6): Cumulative distribution for fine size	
Table (7): Different particles size of product and feed and power required for crushing	

Table of figures

Figure (1): Accumulative mass percent vs. average opening diameter for coarse size5
Figure (2): Accumulative mass percent vs. average opening diameter for intermediate
size6
Figure (3): Accumulative mass percent vs. average opening diameter for fine size7
Figure (4): power required for crushing against varies feed particles size

Table (1): Properties for crushing coarse size particles and power required.

		coars	se size						
	Length (cm)	Width (cm)	Height (cm)	Volume (cm ³)	d _v (mm)	d ₈₀ (mm)			
Dimension of feed particles	2.5	1.5	1	3.75					
	2	1.5	2	4.5	19.83	1.3			
	2	2	1	4					
				Avg=4.0833					
weight of sample			348.214 §	g = 0.00034821	4 ton				
Time needed for crushing	Ď.	$1.12 \min = 0.01867 \text{ hour}$							
feed flow rate (ton/hr)		0.018651							
power (KW)			, e ¹	0.0608					

Table (2): Cumulative distribution for coarse size.

Coarse size							
Sieves size	davg(mm)	Weight(g)	Weight (%)	Weight cumulative (%)			
x ≥1.4mm	1.4	163.554	47.16	100			
$1.4 \text{mm} > x > 850 \ \mu\text{m}$	1.125	66.371	19.14	52.84			
$850 \mu m > x > 500 \mu m$	6.750E-01	43.93	12.67	33.7			
$500 \mu m > x > 355 \mu m$	4.275E-01	18.194	5.25	21.03			
$355 \mu m > x > 250 \mu m$	3.025E-01	17.172	4.95	15.78			
$250 \mu m > x > 180 \mu m$	2.150E-01	6.684	1.93	10.83			
$180 \ \mu \text{m} > x > 90 \ \mu \text{m}$	1.350E-01	9.227	2.66	8.9			
90 μm ≥ x	9.000E-02	21.642	6.24	6.24			
Total		346.774	100.000				

Figure (1): Accumulative mass percent against average opening diameter for coarse size Table (3): Properties for crushing intermediate size particles and power required.

		intermed	iate size			
	length (cm)	Width (cm)	height (cm)	volume (cm³)	d _v (mm)	d ₈₀ (m
Dimension of feed	1.5	1	0.7	1.05	i.	
particles	1.5	1.2	0.4	0.72	12.78	1.3
		- W			12.76	1.5

(cm)	(cm)	(cm)	(cm ³)	d _v (mm)	d ₈₀ (mm)		
1.5	1	0.7	1.05				
1.5	1.2	0.4	0.72	12.78	1.3		
1.8	1.2	0.7	1.512	12.76	1.5		
			Avg=1.094				
346.347 g = 0.00034635 ton							
	1:07 min = 0.017833 hour						
		0.	019422		and the second s		
0.05796							
	1.5 1.5	1.5 1 1.5 1.2 1.8 1.2	1.5 1 0.7 1.5 1.2 0.4 1.8 1.2 0.7 346.347 g = 1:07 min =	1.5 1 0.7 1.05 1.5 1.2 0.4 0.72 1.8 1.2 0.7 1.512 Avg=1.094 346.347 g = 0.00034635 to 1:07 min = 0.017833 ho 0.019422	1.5 1 0.7 1.05 1.5 1.2 0.4 0.72 1.8 1.2 0.7 1.512 Avg=1.094 346.347 g = 0.00034635 ton 1:07 min = 0.017833 hour 0.019422		

Table (4): Cumulative distribution for intermediate size.

Intermediate size								
Sieves size	davg(mm)	Weight(g)	Weight%	Weight cumulative (%)				
x ≥1.4mm	1.4	178.161	51.578	100.00				
$1.4 \text{mm} > x > 850 \ \mu\text{m}$	1.125	62.15	17.993	48.42				
$850 \mu m > x > 500 \mu m$	6.750E-01	39.559	11.452	30.43				
$500 \mu m > x > 355 \mu m$	4.275E-01	16.407	4.750	18,98				
$355 \mu m > x > 250 \mu m$	3.025E-01	15.202	4.401	14.23				
$250 \mu m > x > 180 \mu m$	2.150E-01	6.054	1.753	9.83				
$180 \ \mu m > x > 90 \ \mu m$	1.350E-01	8.216	2,379	8.07				
90 μm ≥ x	9.000E-02	19.67	5.695	5.69				
Total		345.419	100.00	/				

Figure (2): Accumulative mass percent against average opening diameter for intermediate size.

Table (5): Properties for crushing fine size particles and power required.

		Fine size				
	length (cm)	Width (cm)	height (cm)	volume (cm³)	d _v (mm)	d ₈₀ (mm)
Dimension of feed particles	1	0.5	0.3	0.15		
	1.2	0.8	0.4	0.384	7.115	1.3
	0,4	0.4	0.2	0.032		
		aleg Walley		0.1887		
weight of sample		346	.927 g = (0.00034693	3 ton	
Time need for crushing		and the same	$1 \min = 0$.01667 ho	ur	770
feed flow rate (ton/hr)	14		0.0	2081	Colores -	e i i
power (KW)		- 1g. 0	0.0)522		-

Figure (2): Accumulative mass percent against average opening diameter for intermediate size.

Table (5): Properties for crushing fine size particles and power required.

And the second		Fine size				
	length (cm)	Width (cm)	height (cm)	volume (cm ³)	d _v (mm)	d ₈₀ (mm)
Dimension of feed particles	1	0.5	0.3	0.15		
	1.2	0.8	0.4	0.384	7.115	1.3
	0.4	0.4	0.2	0.032		
				0.1887		
weight of sample		346	1.927 g = 0	0.0003469	3 ton	20 TODAY
Time need for crushing		De age		0.01667 ho		1.60
feed flow rate (ton/hr)			10079	02081	uı	
power (KW)		0.000	t general	0522	F 2006	

Table (6): Cumulative distribution for fine size.

Fine size						
Sieves size	d _{avg} (mm)	Weight(g)	Weight%	Weight cumulative (%)		
x ≥1.4mm	1.4	185.583	54.159	100.000		
1.4mm> x >850 μm	1.125	60.272	17.589	45.841		
$850 \ \mu \text{m} > x > 500 \ \mu \text{m}$	6.750E-01	37.37	10.906	28.252		
$500 \ \mu \text{m} > x > 355 \ \mu \text{m}$	4.275E-01	15.026	4.385	17.346		
$355 \mu m > x > 250 \mu m$	3.025E-01	14.122	4.121	12.961		
$250 \ \mu \text{m} > x > 180 \ \mu \text{m}$	2.150E-01	5.58	1.628	8.840		
$180 \ \mu m > x > 90 \ \mu m$	1.350E-01	7.514	2.193	7.211		
90 μ m \geq x	9.000E-02	17.196	5.018	5.018		
Total		342.663	100.000			

Figure (3): Accumulative mass percent against average opening diameter for fine size.

Table (7): Different particles size of product and feed and power required for crushing.

	weight of sample (ton)	time need for crushing (hr)	feed flow rate (ton/hr)	feed particles size L1 (mm)	feed particles size L2 (mm)	work index (kw.hr/ton)	power(KW)
coarse size	0.000348214	THE RESIDENCE OF THE PARTY OF T	0.018651	19.83	1.3	15.8	0.0608
intermediate size	0.00034635	0.017833	0.019422	12.78	1.3	15.8	0.05796
fine size	0.00034693	0.01667	0.02081	7.115	1.3	15.8	0.0522

Figure (4): power required for crushing against varies feed particles size.

Discussion

when studying crushing process on oil shale particles All factors will be constant except initial material size (coarse ,intermediate, fine particles) of crushing process, also studying how initial material size will effect on power requirement Where other process variable (Jaw gap setting , type of material) remain constant .Initially, introduce oil shale in jaw crusher, This apparatus has two Jaws. The rock or stones are held in the jaws of one of them, which is movable, until they are tiny enough to fit through the space at the bottom of the jaws, at which point we utilized a sieve shaker. A sieve shaker automates the agitation of particles for particle separation and size distribution for a range of materials to meet the demands of quality control and quality assurance. Shakers provide consistency, precision, and repeatable separations as compared to hand sieve shaking techniques for particle size. In storage, sieves are organized according to aperture size. The first sample (coarse particles) with average particle size (19.83 mm) it take 1.12 minutes, in the second sample (intermediate particles) with average practical size (12.87mm) it take one minutes and the last one (fine particles) with average particles size (7.115 mm) take one minutes.

After the crushing process is completed, we will put the product in the sieves to calculate the size of the particles after the grinding process and then calculate Accumulative mass passing against screen operating as shown in figure (1) and from it get practical size of product which represent 80% of particle passing screen as shown in figure (1), it observed that the bigger particles need more energy to reach a specific size as shown in table (7).

Due to the volatilization of some grinding dust and its adherence to the walls of jaw device, there is a small amount of inaccuracy in the measurements.

Conclusion

- The larger particles require more energy to grow to a certain size.
- The relationship between crushing force and material crushing strength is essentially linear.
- The crushing process is affected by a number of factors, including: Size of the raw material, setting of the jaw gap, and crushing technique

- 1. Lowrison, C.C., "Crushing and Grinding" Butterworths (1974).
- 2. McCabe, W.L. and Smith, J.C,"Unit Operation of Chemical Engineering ", 3rd edition, McGraw Hill.
- 3. Coulson J.M and Richardson J. F., "Chemical Engineering", Volume 2,2nd edition, Pergamon pre

Appendix

Sample of calculation, taking the first row from Table (1): Coarse size

- 1. Average volume particles size (V_{avg}): 4.0833 cm³.
- 2. Equivalent volume diameter $(d_v) = \left(\frac{6*Vavg}{\pi}\right)^{\frac{1}{3}} = 1.983cm = 19.83mm$
- 3. Weight of sample (ton):

$$m = 348.214 g.$$

$$m = \frac{348.214 g}{1000 g} * 0.001 ton = 0.000348214 ton.$$

4. Time (hr):

t (hr):
$$\frac{1.12 \ min}{60 \ min} * 1 \ hr = 0.01867 \ hr.$$

5. Feed rate (ton/hr):

$$\dot{m} = \frac{\text{weight of sample (ton)}}{\text{time (hr)}} = \frac{0.000348214 \text{ ton}}{0.01867 \text{ hr}} = 0.018651 \text{ ton/hr}.$$

6. Bonds' work index (kw.hr/ton): 15.8

Applying bonds' law:

$$\frac{p}{\dot{m}} = 0.3162 \text{ W}_{i} \left(\frac{1}{\sqrt{L_{2}}} - \frac{1}{\sqrt{L_{1}}} \right)$$

$$\frac{P}{0.018651} = 0.3162 * 15.8 \left(\frac{1}{\sqrt{19.83}} - \frac{1}{\sqrt{1.3}} \right)$$

$$P = 0.0608 \text{ KW}$$

From Table (2), taking the third row:

1. Average screen opening:

Average screen opening.
$$d = \frac{850 + 500}{2} = 675 \ \mu m = 0.675 mm \ .$$

2. Actual sample weight:

Actual sample weights
$$wt = 163.557 + 66.371 + 43.93 + 18.194 + 17.172 + 6.684 + 9.227 + 21.642 = 346.774 g.$$

3. Mass fraction %:

$$= \frac{43.93}{346.774} * 100\% = 12.67\%$$

4. Accumulative weight percent of product:

$$= 6.24 + 2.66 + 1.93 + 4.95 + 5.25 + 12.67 = 30.7\%$$

Jaw crusher Data Sheet -6-

Dimensions of feed particle	Coarse size	Intermediate size	Fine size
	(2.5)*(1.5)*(1)	(1.5)*(1)*(0.7)	(1)*(0.5)*(0.3)
	(2)*(1.5)*(1.5)	(1.5)*(1.2)*(0.4)	(1.2)*(0.8)*(0.4)
	(2)*(2)*(1)	(1.8)*(1.2)*(0.7)	(0.4)*(0.4)*(0.2)
Weight of sample Time need for crushing	348.214 g	346.347 g	346.927 g
	1:12 min	1:07 min	0.59 min

	Mass collected on sieve (g)				
Sieves size	Coarse size	Intermediate size	Fine size		
x >1.4mm	163.554	178.161	185.583		
1.4mm> x >850μm	66.371	62.150	60.272		
$850 \mu m > x > 500 \mu m$	43.930	39.559	37.370		
$500 \mu m > x > 355 \mu m$	18.194	16.407	15.026		
$355 \mu m > x > 250 \mu m$	17.172	15.202	14.122		
$250 \mu m > x > 180 \mu m$	6.684	6.054	5.580		
$180 \ \mu \text{m} > x > 125 \ \mu \text{m}$	9.227	8.261	7.514		
$125 \mu\text{m} > x$	21.642	19.670	17.196		