Chapter 1:

-> Chemical reaction Engineering [CRE]: is the field that studies the nates 9 mechanisims of chemical reactions 9 the design of the reactor in which they take place.

Pillars of CRE:

- 1- Mole Balance
- 2- Rate Laws
- 3 Stiochiometry
- 4 Energy Balances
- 6- Diffusion
- 6- Contacting

* CRE Algorithim

Mole Balance + Rate Laws + Stiochiometry + Energy Balance + Combine -> solution Cisothermal system)

→ Mole Balances:

- -> Four most common types of industrial reactors
 - 1- Batch Reactor
 - 2- Continous Stirred tank Reactor (CSTR)
 - 3- Tubular Reactor or Plug flow Reactor (PFR)
 - 4- Packed bed Reactor (PBR)
- * The selection of a reaction system that operates in the safest $\frac{8}{7}$ most efficient manner can be the key to the economic success or failure of a chemical plant.
- →if a reaction system produces a large amount of undesirable product, subsequent purification 3 seperation of the desired product could make the entire process economically unfeasible.

Rate of Reaction (- rA)

hate of Reaction: how fast a number of moles of one chemical species are being consumed to form another

Chemical species

 \iint

Chemical species: any chemical component or element with a given identity

 $\frac{A}{4}$

Identity of chemical species: atoms, Number of atoms, configuration

-> A chemical reaction has taken place when a detectable number of molecules of one or more species have lost their identity; change in kind or number of atoms 4/or change in structure or configuration.

→ Total mass is neither created nor destroyed ←

conservation of mass principle

Three ways for a species to loose it's identity

- 1- Decomposition
- 2- Combination
- 3- isomerization
- → The rate of reaction is the number of moles of species A loosing their chemical identity per unit time

 Per unit volume
 - → Rate of Disappearance of reactant: rA
 - -> Rate of formation (Generation) of a product . To

 $A \rightarrow B$

- IA: rate of disappearance of A

ra: rate of formation of A

PB: rate of formation of B

* consider species j

- if species 1 is a reactant rj = -4 mol/dm3/s
- if species j is a product (j = 4mol/dm3/s
- G is a function of temperature, pressure, & Type of outalyst.
- rj is independent of the type of reaction system
- f_j is an algebric equation, not a differential equation \rightarrow independent of time $\frac{\partial C_{\mathbf{A}}}{\partial t}$ is not the rate of reaction

→ [,'

- Heterogenous reactions involve more than one phase, the rate of reaction is usually expressed in measures other than volume [reaction surface area, catalyst weight]
- · for gas-solid catalytic reaction, the gas molecules must interact with the solid catalyst surface for the reaction to take place.

(number of moles A reaching per unit time per unit mass of catalyst

General Mole Balance Equation

Molar flow rate of - Molar flow rate of + Molar Generation of = Molar rate Accumulation of species j species j

• if the system is uniform throught its entire volume -> spatially uniform

Gij= fj V

b) rate of reaction

(mol/time · Volume) Volume = Gij
$$\left(\frac{\text{mole}}{\text{time}}\right)$$

f) product (+) \Rightarrow + G1 generation

f; reactant (-) \Rightarrow - G1 consumption

> if not spatially uniform

$$G_j = \sum_{i \in J_i} DV_i = \int_{I_i} dV$$

species j at a volumes
element i

1- Batch Reactor

- Reactants are placed in the reactor, & the reaction is allowed to proceed for some time
- closed system: no addition of reactants or removal of products during the reaction.
- Unsteady state conditions: changes in composition with time. (I reactant, 1 product)
 - → Ideal Batch Reactor: Perfect mixing
- Spatially constant temperature & concentration, but not constant in time.

$$\rightarrow$$
 Mole Balance: In $-90f$ + Greneration = Accumulation

$$\int r_j dV = \frac{\partial N_j}{\partial t}$$
 Batch Reactor Design Equation

- if the reactor is perfectly mixed, spatially constant temperature & concentration: -

$$\frac{\partial N_{P}}{\partial t} = r_{P} V$$
 ideal Batch Reactor Design Equation

by time necessary to reduce the number of moles A from NAO to NA

2 - Continous Stirred Tank Reactor [CSTR]

- Continously add reactants & remove products (open system)
- Inlet stream instantanously mixes with bulk of reactor volume.
 - -> Ideal CSTR: Assume perfect mixing occurs in vessel
- Spatially constant temperature & concentration
- Composition of the exit stream is the same as that inside reactor (CA , whet = CA, tank)
- Steady State conditions. Reaction Rate is the same at every point & doesnot change with time

$$F_{jo} - F_{j} + \int \Gamma_{j} dV = 0$$
 Steady State CSTR Design Equation

- Perfectly mixed, Spatially constant CSTR:

$$F_{jo} - F_{ij} + F_{ij}V = 0$$

4) Reactor Volume required to reduce the entering flow rate of species j from Flo to fig at the outlet

Molar flow late = Concentration j x volumetric flow Rate

$$\left[\begin{array}{c} \frac{\text{moles } j}{\text{time}} \right] = \left[\begin{array}{c} \frac{\text{moles } j}{\text{Volume}} \right] \times \left[\begin{array}{c} \frac{\text{volume}}{\text{time}} \end{array}\right]$$

$$\frac{1}{1 - \sqrt{100}} = \frac{C_{10} \gamma - C_{10} \gamma}{1 - C_{10}}$$

3- Plug Flow Reactor [PFR]

- Cylindrical fipe with openings at both ends
- steady movement of material down the length of the reactor
- Reactants are consumed as they flow down the length of the reactor.
- Steady State operation
- No radial variation in temperature, concentration, & reaction rate
- All fluids/gas elements have the same residence time

-> Mole Balance

- the composition of the fluid varies from point to point along a flow path. Consequently the material balance for a differential element of volume DV

$$\frac{\sqrt{m}}{\sqrt{m}} = r_A \qquad \Rightarrow \qquad \frac{dF_A}{dV} = r_A$$

Volume necessary to reduce the entering molar flow rate from FAD to FAD Degree of- completion of ideal PFR is not affected by PFR shape, only volume.

4- Packed bed Reautor [PBR]

- Cylindrical shell, vertically oriented [gravity driven flow]
- Heterogenous reaction fixed bed of catalyst inside
- Concentration gradient of reactant & product down the length of reactor
- Reaction occurs on the surface of the catalyst pellets
- Reaction Rate is based on the mass of solid cutalyst [W], not reactor volume [V]

→ Mole Balance

$$F_{jo} - f_j + r_j dV = 0$$

ry = dfj -> similar to PFR, but expressed in catalyst weight

*Units for the rate of
$$\frac{mol}{5.m3}$$
homogenous rxn $(r_j) = \frac{5.m3}{5.m3}$

$$\frac{\partial \mathcal{W}}{\partial f_i} = C_i'$$

Reactors Mole Balances Summary

Reactor	Differential	Algebric	Integra I	comments
Batch	dNr = rav		t= J dNA NAO PAV	spatially constant Unsteady State
CSTR		V= <u>FAO - FA</u> - PA		spahally constant steady state
PFR	dfa = ra		FA $V = \int \frac{d FA}{CA}$ FAO	Stendy State
PBR	dfj = ra		W= J JFA FAO rx'	steady state

* CSTR -> Algebric due to constant concentration
only volume changes (residence time)

Selection of feactors:

Batch: - Small scale

- production of expensive products (pharmacy)
- high labour costs per batch
- difficult for large scale production

CSTR: - most homogenous liquid - phase flow reactor

- when intense agitation is sequired
- easy to maintain good temperature control
- the conversion per volume of reactor is the smallest of the flow reactors

PFR: - most homogenous gas-phase flow reactor

- relatively easy to maintain
- usually produces the highest conversion per reactor volume
- Difficult to control temperature
- not spots can occur

Chapter 2: Conversion & Reactor Sizing

Defenition of conversion

$$aR + bB \rightarrow cC + dD$$

- choose limiting reactant A as a basis of calculation

$$A + \frac{b}{a} B \rightarrow \frac{c}{a} C + \frac{d}{a} D$$

 \Rightarrow Conversion X_A the number of moles of A that have reacted per mole of A fed to the system $X_A = \frac{\text{moles A racted}}{\text{moles b fed}}$

- for Batch system: moles A fed is the amount of A at the start of the reactor at (t=0)
- for flow bystem: moles A fed is the amount of A entering the reactor

Expressing other components conversion in Terms of XA

Basis "Limiting of the strict coefficient"

A +
$$\frac{b}{a}$$
 B $\rightarrow \frac{c}{a}$ C + $\frac{d}{a}$ D $\downarrow \frac{a}{a}$ moles A reacted moles A fed by "strock ionetric coefficient"

_ Batch system: Longer reactant is in the reactor, more reactant is converted into product (until reactant is consumed or the reaction reaches equilibruim [reversible reaction])

Conversion (Xj) is a function of time (t) in the batch reactor

$$\rightarrow NR = NRO(1-XR)$$

for C: Nc=Nco+ CNAO][XA]

for D:
$$N_p = N_{po} + \frac{d}{q} [N_{Ao}][X_A]$$

Batch Reactor:

Moles A remaining = Moles A initially - Moles A reacted

1NA - 0 - NAOX

* Batch Reactor Mole Bulance

* TE TX TNA JNAO

$$\frac{9f}{9Nb} = -Nb^{0}\frac{9f}{9X} = L^{b}\Lambda$$

$$\frac{\sqrt{4}}{\sqrt{4}} = \frac{\sqrt{6}}{\sqrt{6}} = \sqrt{6}$$

$$= \xi = N_{\mu \circ} \int_{X}^{0} \frac{C_{\mu} V}{dX}$$

 \Rightarrow t necessary to achive conversion X

CSTR

Moles A leaving = Moles A entering - Moles A reacted

$$V = \frac{\int_{A_0} - \int_{A}}{- \int_{A}} \implies V = \frac{\int_{A_0} - \left[\int_{A_0} - \left(\int_{A_0} \chi_{A} \right) \right]}{- \int_{A}}$$

PFR

Moles A leaving = Moles A entering - Moles A Reacted

$$\frac{dV}{dV} = \frac{-\Gamma_{A}}{F_{AO}} \qquad \qquad X=X \quad V=V$$

$$V = \int_{0}^{x} \frac{F_{A0}}{-\Gamma_{A}} dX$$

FAO dX PFR Volume necessary to achive conversion X

Reactors Mole Balance Summary in terms of conversion X

Reactor	Differential	Algebric	Integral
Batch	$N_{RO} \frac{dX}{dt} = -r_{R}V$		E= NAO J dX
CSIR		V = FAOX -rA	
PFR	Fao dxra		V = J FAD dX
PBR	FRO dx = -r'A		W = \(\frac{f_{no}}{0} \) \(\frac{1}{h} \)

Applications of the Design Equations for Continous Flow Reactors

- Levenspiel plots

~ -rA as a function of conversion

w Levenspiel plot, either (fao/-ra) or $(-1/r_A)$ as a function of X

w shaded area in Levenspiel plot -> volume of CSTR & PFR

-> For all irreversible reactions of order 7 Zero, as complete conversion is approached, all the limiting reactant is used up

$$AS \qquad X \rightarrow I$$

$$-\Gamma_{A} \rightarrow O \qquad , \qquad \frac{1}{-\Gamma_{A}} \rightarrow D$$

$$.. \quad V \rightarrow \omega$$

→ For reversible reactions, the maximum conversion is the equilibrium conversion Xe

[At equilibrium the reaction rate is Zero]

CSTR:

$$V = \frac{F_{RO} \times}{-r_R} \longrightarrow V = \left[\frac{F_{RO}}{-r_R}\right]_{X_1}$$

Area = volume
of (6TR >)

 \star CSTR volume 7 PFR volume for reactions above zero order due to CSTR operating at lowest possible reaction rate, whereas PFR starts with highest- $\frac{1}{2}$ decrease gradually $\frac{1}{2}$ d $\frac{1}{2}$

Regutors in Series.

· Given - ra as a function of conversion, one can also design any sequence of reactors in series by defining Xi

X1 = total mojes of A reacted upto point i
mojes of A fed to first reactor

*moles into first reactor -> reference

Konly valid if there are no side streams

→ Molar flow rate of species A at point i

Fai = Fao - Fao Xi

→ Reactors in series.

Reactor 1: FA = FAO - FAO X1

$$V_{1} = \frac{F_{AO} - F_{A}}{-\Gamma_{A_{1}}} = \frac{F_{AO} - \left(F_{AO} - F_{AO} X_{1}\right)}{-\Gamma_{A_{1}}} = \frac{F_{AO} X_{1}}{-\Gamma_{A_{1}}}$$

Reactor 2.
$$v_2 = \int_{x_1}^{x_2} \frac{F_{AD}}{-r_A} dx$$

Reactor 3:

$$V_3 = \frac{F_{AO} \left(X_3 - X_z \right)}{-f_{A3}}$$

Space Time, T

-space time, I is the time necessary to process one reactor volume of fluid at enterance conditions.

$$\Rightarrow \text{ for } C \text{ STR} \qquad \mathcal{T} = \frac{V}{v_0} = \frac{C_{AO} X}{-\Gamma_{A}}$$

$$\Rightarrow \text{ for } PFR \qquad \mathcal{T} = \frac{V}{v_0} = C_{AO} \int_{O}^{X} \frac{dX}{-\Gamma_{A}}$$

Space relocity

$$3V = \frac{\gamma_0}{V}$$

$$3V = \frac{1}{T}$$

$$\Rightarrow 6195 \text{ hourly space velocity}$$

* Two CSTR's in series -> less volume needed than one CSTR (more efficient)

This case doesn't hold true for two PFR reactors in series. [the total reactor volume needed to achieve the same conversion will be the same]

Chapter 3: Rate Laws

Types of Reactions:

- Homogenous Reaction: involves only one phase
- Heterogenous Reaction: involves more than one phase, reaction on the interface
- Irreversible Reaction: proceeds in only one direction & continues in that direction until the reactants are exhausted [complete reaction ex. Acid - base reactions]
- Reversible Reaction: proceeds in either direction, depending on concentrations till equilibrium

Molecularity of Reaction

- Molecularity of Reaction -> number of atoms, ions or molecules involved in a reaction step -> Most common unimo lecular reaction:

$$V \longrightarrow Th + He$$
 $-r_0 = K C_0$

- The true bimolecular reactions that exist are reactions involving free radical.

> Probability of teramolecular reaction occurring is almost nonexistant (reaction pathway follows a series of bimolecular reactions J

$$2N0 + O_2 \rightarrow 2NO_2$$

-> Rate Law

Rate Law [kinetic expression] → Algebric equation that relates - rn to the species concentrations.

Power Law Model

· A reaction follows an elementary rate law if the reaction order agrees with the sticchiometric coefficients

Ex:
$$2A + B \rightarrow 3C$$

→ if reaction follows elementary rate Law

* Rate Laws are determined by experimental observation

Relative Rates of Reaction

$$aA + bB \rightarrow cC + dD$$

$$A + \frac{b}{a}B \rightarrow \frac{c}{a}C + \frac{d}{a}D$$

$$\frac{\Gamma_{A}}{-\alpha} = \frac{\Gamma_{B}}{-b} = \frac{\Gamma_{C}}{C} = \frac{\Gamma_{D}}{d}$$

Ex: $2A + B \rightarrow 3C$

$$\frac{\Gamma_{R}}{-2} = \frac{\Gamma_{B}}{-1} = \frac{\Gamma_{C}}{3}$$

$$-r_{g} = \frac{10}{-2} = -5 \text{ mol}/\text{dm}^{3} \cdot \text{S}$$

$$\frac{r_c}{3} = \frac{-5}{-1} = 15 \text{ mol} / dm^3 \cdot s$$

-> Reversible Elementary Reaction

$$-r_{A} = K C_{A}^{2} C_{B} - K_{-A} C_{C}^{3} = K_{A} \left[C_{A}^{2} C_{B} - \frac{C_{C}^{3}}{K_{A}/K_{-A}} \right]$$

The Reaction Rate Constant

- K → specific reaction rate or the reaction rate constant
- not truly a constant -independent of the concentrations of the species involved
- Strongly dependent on temperature.
- depends on whether or not a catalyst is present, I in gos phase reactions it may be a function of total pressure
- · In lig system it can be a function of other parameters, such as ionic strength & choice of solvent -> Those variables have much less effect than temperature bey with the exception of supercritical solvents.

E= Activation Energy [cal/mol]

R= Gras Constant [cal/mol·k]

T= Temperature [k]

A = frequency factor [units of A & K depend on overall reaction order]

In
$$K_A = In A - \frac{E}{R} \left(\frac{1}{T} \right)$$
Slope

* The Activation Energy can be thought of as a barrier to energy transfer [from KE to PE]

exponentially)

+ 1K 1T till a specific temp Encressing

Reaction wordinates denote the energy of the system as a function of progress along the reaction path [reactants -> Intermediate -> products]

- → for a reaction to occur the reactants must overcome an energy barrier [Activation Energy]
 - 1. molecules need energy to disort or stretch their bonds [break 4 form new bonds]
 - 2 overcome stearic & electron repulsion forces.
- \rightarrow Collision Theory: By increasing the temp, kinetic energy increases \rightarrow transferred into Internal Energy to increase the stretching 9 bending of bonds \rightarrow reach Activated State.

* Temp, Trate of reaction, T Activation Energy (E)

Chapter 4. Stiochiometry

-> Stiochiometric tubles to express the concentration as a function of conversion

$$A + \frac{b}{a} B \rightarrow \frac{c}{a} C + \frac{d}{a} D$$

* A is the limiting reactant

NA = NAO - NNO X

 \rightarrow for every mole of A that reacts, $\frac{b}{a}$ moles of B react

-> Moles of B remaining

$$N_{g} = N_{go} - \frac{b}{\alpha} N_{Ao} X = N_{Ao} \left[\frac{N_{go}}{N_{Ao}} - \frac{b}{\alpha} X \right]$$

$$N_{c} = N_{co} + \frac{C}{q} N_{AO} X = N_{AO} \left[\frac{Q_c}{q} + \frac{C}{q} X \right]$$

	Batch	System Stoichiometry	Table
species	Initia l	Change	Remaining
A	NAO	- NaoX	NA = NAO (I-X)
В	NBO = NAO OB	- <u>b</u> NAO X	NB = NAO (Ob - bx)
С	NC0 = NA0 Oc	C NAO X	NC= NAO(&(+ CX)
D	Noo= NAO Op	d NAOX	ND= NAO (OC + d X)
iner t	N10 = NA0 OI	No Duange	NI= NAO GI

$$\frac{O_1 - \frac{V_{10}}{V_{P0}} = \frac{C_{10} V_0}{C_{A0} V_0} = \frac{C_{10}}{C_{A0}} = \frac{y_{10}}{y_{R0}}$$

 δ = Change in total number of mol per mol A reacted [product - reactant]

$$\delta = \frac{C}{q} + \frac{d}{q} - \frac{b}{a} = 1$$
Constant $\frac{c_1}{a} = 1$

 \star if the reaction occurs in the liquid phase [uncompressible], or gas phase reaction in a rigid [constant volume] both reactor $V=V_0$

$$\frac{C_{A} = \frac{N_{A}}{V} = \frac{N_{AO}(1-X)}{V_{O}} = C_{AO}(1-X)$$

$$C_{B} = \frac{NB}{V} = \frac{NAO(O_{B} - \frac{b}{a}X)}{V_{a}} = C_{AO}(O_{B} - \frac{b}{a}X)$$

* Suppose
$$-r_A = KC_A^2 C_B$$

 $\rightarrow Batch V = V_0$

$$-r_{A} = K \left(\frac{2}{A^{0}}\left(1-X\right)^{2} \cdot C_{A0}\left(\frac{\partial R - \frac{b}{A}X}{A}\right) \right)$$

$$-r_{A} = K \left(\frac{2}{A^{0}}\left(1-X\right)^{2}\left(\frac{\partial R - \frac{b}{A}X}{A}\right)\right)$$

• for equinolar feed
$$O_{B}=1$$
 [$O_{B}=\frac{N_{BO}}{N_{BO}}=\frac{0.5}{0.5}=1$]

• Strochiometric feed
$$OB = \frac{b}{a}$$

Calculate the equilibrium conversion for gas phase reaction, X_e.

purite rate Law then stio unionetry

Consider the following **elementary** reaction with $K_C=20 \text{ dm}^3/\text{mol}$ and $C_{A0}=0.2 \text{ mol/dm}^3$. Find X_P for a **constant volume batch reactor.**

$$K_{C} = 20 \, dm^{3}/mol$$
 $C_{A0} = 0.2 \, mol \, (dm^{3})$

$$2A \Leftrightarrow B$$

2. mde Balance [constant volume Batch reactor]:

Initial Change remaining

A NAO -NAO X NA = NAO
$$(1-X)$$

$$\beta \qquad 0 \qquad \frac{1}{2} N_{A0} X \qquad N_{B} = N_{A0} \left(\frac{9}{8} + \frac{1}{2} X \right) \qquad \theta_{B} = 0$$

$$C_{Ae} = \frac{N_{Ae}}{V} = \frac{N_{AO}(1-X_e)}{V_o} = C_{AO}(1-X_e)$$

$$C_{Be} = \frac{N_{Be}}{V} = \frac{1}{2} N_{AO} X_{e} = C_{AO} (\frac{1}{2} X_{e})$$

4. Combine [substitute concentrations into rate Law ex)

$$C_{AO}^{2}(1-x)^{2} = \frac{C_{AO}(\frac{1}{2}x_{e})}{\chi_{e}}$$

$$K_e = \frac{C_{Ao} \left(\frac{1}{2} X_e \right)}{\left(\frac{1}{Ao} \frac{1}{2} \left(1 - X_o \right)^2} = \frac{X_e}{2 \left(\frac{1}{Ao} \left(1 - X_e \right)^2} \right)$$

$$20 = \frac{\chi_e}{2(02)(1-\chi_e)^2}$$

$$\chi_e = 0.703 \Rightarrow Max$$
 conversion under these conditions

Flow System Stoichiometry Table

Reactor feed

Change

Reactor effluent

A

$$f_{AO}$$
 $-f_{AO} \times F_{AO} \times F$

$$\frac{g = F_{10}}{F_{A0}} = \frac{C_{10} V_0}{G_{A0} V_0} = \frac{C_{10}}{C_{A0}} = \frac{Y_{10}}{Y_{A0}}$$

$$\delta = \frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1$$

$$\rightarrow$$
 Concentration for flow system $C_A = \frac{f_A}{V}$
 \rightarrow 1/1/2 phase flow system $V = V_0$ [constant volume]

•
$$C_{A} = \frac{F_{A}}{V} = \frac{F_{A} \cdot (1-X)}{V_{o}} = C_{A_{o}}(1-X)$$

•
$$C_{B} = \frac{F_{B}}{V} = \frac{F_{AO}(O_{B} - \frac{b}{Q}X)}{V_{C}} = C_{AO}(O_{B} - \frac{b}{Q}X)$$

Ly then:
$$-r_A = K C_{Ao} (1-X) C_{Ao} (\theta_B - \frac{b}{a}X)$$

 $-r_A = K C_{Ao}^2 (1-X) (\theta_B - \frac{b}{a}X)$

-> G195 Flow Systems

Ex:
$$N_2 + 3 H_2 \rightleftharpoons 2NH_3$$

4mol of readants give 2 mols of product

* The molar flow rate will be changing as the reaction progresses

- * Because equal number of moles occupy equal volumes in the gas phase at the same temperature $\frac{1}{2}$ pressure $\frac{1}{2}$ The volumetric flow rate will also change $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
 - -> Combine the compressibility factor equation of state Z=Zo (to generalize, not only ideal gases)

Fr= CTV

$$C_{T_0} = \frac{P_0}{Z_0 R \Gamma_0}$$
 $F_{T_0} = C_{T_0} V_0$

→ Stoichiometry

$$\frac{C_{A} = \frac{F_{A}}{V} = \frac{F_{A}}{V_{o}\left(\frac{F_{T}}{F_{T}} - \frac{T_{o}}{T_{o}} - \frac{P_{o}}{P_{o}}\right)}{V_{o}\left(\frac{F_{T}}{F_{T}} - \frac{T_{o}}{T_{o}} - \frac{P_{o}}{P_{o}}\right)} = \frac{F_{To}}{V_{o}} - \frac{F_{A}}{F_{T}} - \frac{T_{o}}{T_{o}} - \frac{P_{o}}{P_{o}} = C_{To} - \frac{F_{A}}{F_{T}} - \frac{T_{o}}{T_{o}} - \frac{P_{o}}{P_{o}}$$

$$C_B = C_{T_b} \frac{f_B}{f_{\bar{1}}} \frac{T_o}{T} \frac{P_o}{P_o}$$

Substituting
$$F_{\tau}$$
 in $V = V_0 = \frac{F_{\tau}}{F_{\tau 0}} = \frac{P_0}{P} = \frac{T}{T_0}$

•
$$(\beta = \frac{F_B}{\gamma} = C_{NO} \frac{(O_B - \frac{b}{Q} \times)}{(1 + \xi \times)} \frac{P}{P_O} \frac{T_O}{T}$$

$$-r_{A} = N \left[\frac{(1-x)}{(1+\epsilon x)} \frac{(O_{B} - \frac{b}{\alpha} x)}{(1+\epsilon x)} \left(\frac{P}{P_{o}} \frac{T_{o}}{T} \right)^{2} \right]$$

$$\mathcal{E} = \left(\frac{d}{\alpha} + \frac{C}{\alpha} - \frac{b}{\alpha} - 1 \right) \frac{f_{AO}}{f_{\overline{1}O}} = \delta y_{AO}$$

2 = Change in total number of moley for complete conversion total number of moles fed to the reautor

Example:

 Consider the following elementary reaction where

$$2A \Leftrightarrow B \qquad -r_A = k_A \left[C_A^2 - \frac{C_B}{K_C} \right]$$

 $K_C = 20 \text{ dm}^3/\text{mol and } C_{A0} = 0.2 \text{ mol/dm}^3.$

• Calculate Equilibrium Conversion for an isothermal isobaric flow reactor (X_{ef}) .

$$= 0.2 \text{ mol/dm}^3.$$

1. Rate law
$$-r_A = K_A \left[C_A^2 - \frac{C_B}{K_C} \right]$$

2. Stoichiometry A -> 12 B

Remaining

FA = FAO(1-x)

Cho = 0.2 mol / dm3

FB: FAO(θB+ ½χ) σβ=0

Fr= FAO

$$\frac{C_{A} = \frac{F_{A}}{V}}{V} = \frac{C_{AO}}{(1 + 2X)} \frac{(1 - X)}{(1 + 2X)}$$

$$\frac{C_{B} = \frac{F_{B}}{V}}{V} = \frac{C_{AO}}{(1 + 2X)} \frac{(O_{B} + J_{2}X)}{(1 + 2X)} = \frac{C_{AO}}{2(1 + 2X)}$$

-> Subtitute in rate Law:

$$-\Gamma_{A} = K \left[\left(C_{Ao} \frac{(1-\chi)}{(1+\xi\chi)} \right)^{2} - \frac{C_{Ao} \chi}{2(1+\xi\chi) K_{c}} \right]$$

$$\xi = y_{no} \delta$$
 \Rightarrow pure A in feed $y_{no} = 1$
 $\delta = -\frac{1}{2}$

→ At equilibrium - rA = 0

$$\frac{D=\left(\frac{A_0}{(1+\xi X)}\right)^2 - \frac{C_{A_0} X}{2(1+\xi X) Kc}}{\left(\frac{A_0}{(1+\xi X)}\right)^2 = \frac{C_{A_0} X}{2(1+\xi X) Kc}}$$

$$\frac{2Kc}{(A_0)} \left(\frac{A_0}{(1+\xi X)}\right)^2 = \frac{C_{A_0} X}{2(1+\xi X) Kc}$$

$$2 K_{c} \cdot C_{AO} \cdot \frac{(1-x)^{2}}{(1+6x)^{2}} = \frac{x}{(1+6x)}$$

$$2 K_{c} \cdot C_{AO} = \frac{X_{e} (1+6x)}{(1-x)^{2}}$$

$$2 (20) (0.2) = \frac{X_{e} (1-\frac{1}{2} X_{e})}{(1-X_{e})^{2}}$$

$$\frac{X_{e} \cdot C_{AO} \cdot C_{$$

Example 1

Liquid Phase Undergraduate Laboratory Experiment

$$(CH_2CO)_2O + H_2O \rightarrow 2CH_3COOH$$

 $A + B \rightarrow 2C$

Feed

Volumetric flow rate $v_0 = 0.0033 \text{ dm}^3/\text{s}$

Acetic Anhydride 7.8% (1M)
Water 92.2% (51.2M)

Elementary with k' $1.95 \times 10^{-4} \, dm^3/(mol. s)$

Case I CSTR $V = 1 \text{ dm}^3$ Case II PFR $V = 0.311 \text{ dm}^3$

Case 1 CSTR

1. mole Balance CSTR

2. Elementary Rate Law

3. Stoichiometry

$$C_{A} = \frac{F_{A \circ}}{V} = \frac{F_{A \circ} (1-X)}{V} = C_{A \circ} (1-X)$$

$$C_{B} = \frac{F_{BO}}{r} = \frac{F_{AO}(O_{B} - \chi)}{V_{O}} = C_{AO}(O_{B} - \chi)$$

$$O_{B} = \frac{51.2}{1} = 51.2$$

Entering

Change

Remaining

A

FAO

- FAO X

FA = FAO(1-X)

Fro On - Fro X

FB = FAO (OB - X)

0

2 FAO X

Fc = Fno (Oc + 2x)

4. Combine

-into mole Balance

FAO - VO (AO

$$\frac{C = V}{V_0} = \frac{1 \, dm^3}{0.0033 \, dm_0^3} = \frac{303.03}{1.94 \, x10^{-4} \, (51.2) \, (1-x)}$$

Case 2: PfR

1. mole Balance

$$\frac{\partial y}{\partial v} = \frac{-r_A}{F_{AO}}$$

2. Rate Law

3. Stoichiometry

$$C_{M} = \frac{F_{M}}{V_{O}} = \frac{F_{MO}(1-x)}{V_{O}} = C_{MO}(1-x)$$

$$C_{B} = \frac{F_{13}}{V_{0}} = \frac{F_{A0}(51.2-x)}{V_{0}} \approx C_{A0}(5).2) \approx C_{B0}$$

4. Combine

$$\frac{\partial A}{\partial x} = \frac{K(1-x)}{x^2}$$

$$\frac{50}{100} = \frac{100}{100} = \frac$$

$$\frac{\text{Integrate}}{v_6} = -\ln(1-x)$$

$$\frac{51.2 \times 1.94 \times 10^{-4} \times \frac{0.311}{0.0033} = -\ln(1-X)}{0.0033} \times \frac{0.311}{0.0033}$$

Example 2

• Gas Phase: PFR and Batch Calculation

$$\begin{array}{ccc} \text{2NOCI} & \rightarrow \text{2NO} + \text{CI}_2 \\ \text{2A} & \rightarrow \text{2B} & + \text{C} \end{array}$$

Pure NOCI fed with $C_{NOCI,0} = 0.2 \text{ mol/dm}^3$ follows an elementary rate law with k = 0.29 dm³/(mol.s)

Case I PFR with $v_0 = 10 \text{ dm}^3/\text{s}$

Find space time, τ with X = 0.9 Find reactor volume, V for X = 0.9

Case II Batch constant volume

Find the time, t, necessary to achieve 90% conversion. Compare τ and t.

Vo = 10 dm3/5 CAO - 0-2 mo 1/dm3

K=6.29 dm3/mol.s

T=T0 P=P0 V=? X=0.9

Case 1. PFR

1 mole Balanue

$$\frac{\partial X}{\partial v} = \frac{-r_{A}}{F_{AO}}$$

2. Rate law [Flementary]

3. Stoichiometry

$$2A \rightarrow 2B + C$$

$$A \rightarrow B + \frac{1}{2}C$$

$$\frac{CA = \frac{F_A}{V} = \frac{F_{Ao}(1-\chi)}{V_o(1+\xi\chi)} = \frac{C_{Ao}(1-\chi)}{(1+\xi\chi)}$$

4 combine
$$-\Gamma_A = K \left[C_{A0}^2 \frac{(1-\chi)^2}{(1+\xi\chi)^2} \right]$$

$$\frac{\partial X}{\partial V} = \frac{K C_{no}^2 (1-X)^2}{F_{no} (1+E_X)^2}$$

$$\frac{dX}{dV} = K \frac{C_{no}^{2} (1-X)^{2}}{C_{no} V_{o} (1+2X)^{2}}$$

$$\frac{K \operatorname{Cho}}{v_0} \quad \partial V = \frac{(1+2X)^2}{(1-X)^2} dX \qquad \Longrightarrow \operatorname{Integrate}$$

$$\frac{V_{\text{CAO}} V}{V_{\text{O}}} = 2\xi \left(1+\xi X\right) \ln \left(1-X\right) + \xi^{2} X + \frac{\left(1+\xi\right)^{2} X}{1-X}$$

$$\xi = y_{A0} \delta = |(y_{2}) = y_{2}$$

 $\delta = y_{2} + |-| = y_{2}$

$$K C_{A_0} C = 2(\frac{1}{2})(1+\frac{1}{2}\cdot0.9)\ln(1-0.9)+(\frac{1}{2})^20.9+\frac{(1+\frac{1}{2})^20.9}{(-0.9)}$$

$$\mathcal{T} = 295 \text{ s} = \frac{V}{V_{\text{o}}}$$

$$V = 2954 \text{ dm}^3$$

1. Mole Balance
$$\frac{dX}{dt} = -\frac{r_{A}V}{N_{A}}$$

$$\frac{\partial \chi}{\partial x} = \frac{\partial x}{\partial x}$$

3. Stoichiometry
$$C_A = \frac{N_A - N_{Ab}(1-X)}{V_0} = C_{AO}(1-X)$$

$$\frac{1}{(1-X)^2} dX = KC_{AO} dt$$

$$\frac{X}{(1-X)} = X C_{AO} t$$

$$\frac{0.9}{(1-0.9)} = 0.29(0.2) t$$

Chapter 5: Isothermal Reactor Design

Figure 5-2 Algorithm for isothermal reactors.

1- Batch Reactors: [Liquid]

- -no inflow or outflow
- perfect mixing
- incompressible ⇒ Constant volume V = Vo

$2A \rightarrow B+C$

Algorithim:

$$\frac{\partial x}{\partial t} = \frac{-r_{Ao}}{c_{Ao}}$$

$$\frac{dY}{dt} = \frac{K \left(Ao^{2} \left(1-X\right)^{2}\right)}{C_{AO}} \Rightarrow \frac{dX}{dt} = K \left(Ao \left(1-X\right)^{2}\right)$$

$$\frac{\partial X}{(1-X)^2} = K CAO dt$$

$$\frac{\chi}{1-\chi} = K(\rho_0 t) \qquad t = \frac{\chi}{(1-\chi) K(\rho_0 t)}$$

CSTR

2. Rate Law

4. combine

→ to increase TK. 1. increase T to increase K -> TX

2 increase T by increasing volume AT = TY > AX

3 decreasing volumetric flow rate 12 = V

-> Second order Reaction in CSTR

Damkohler number Da=TKCAO

→ A+ high conv (67.1.), Increase in reactor

Volume will only increase conversion upto (88.1.)

→ (STR operates under the condition of the lowest reactant concentration

The Damkohler number gives a quick estimate of the degree of conversion that can be achieved in continuous flow reautor

- → first order reaction Dq = TK
- → Sciond order reaction Da= TK(Ao

CSTR's in Series [V= Vo]

→ effluent from first reactor

- mole Balance on reactor 2

$$V = \frac{f_{A1} - f_{A2}}{-r_{A2}} = \frac{v_0 \left(C_{A1} - C_{A2} \right)}{-r_{A2}}$$

-> Concentration of second reactor

* same size $\hat{\tau}$, = $\hat{\tau}_1$ = $\hat{\tau}_3$ Same temp $K_1 = K_2 = K_3$

→n CSTR'S in Series

$$C_{An} = \frac{C_{Ao}}{(1+TK)^n} = \frac{C_{AO}}{(1+D_9)^n}$$

- The rate of disapperance of A

** when entering molar flow rate is divided into two CSFR's in parallel \Rightarrow overall conversion is Same as single CSTR, for two CSTR's in series \Rightarrow conversion is greater than single CSTR.

True for isothermal reactions with power rate law with reaction orders 7 Zero.

Tubular Reactors

$$\rightarrow \frac{dX}{dV}$$
 FAO = -rA : must be used for pressure drop

Ex: 119 Phase no pressure drop PFR reaction [Algorithin] $2A \rightarrow B$

$$V = \int_{0}^{X} \frac{v_{0} \left(A_{0}}{k \left(A_{0}^{2} \left(1-X\right)^{2}\right)} dX \Rightarrow \frac{v_{0}}{k \left(A_{0}^{2} \left(1-X\right)^{2}\right)} \frac{dx}{k \left(A_{0}^{2} \left(1-X\right)^{2}\right)}$$

$$\frac{T = V}{v_0} = \frac{X}{V C_{RO}(1-X)}$$

Ex: gas phase no pressure drop PFR reaction Calgorithim)

3. Stoichiometry
$$V = V_0 (1 + \Sigma X) (\frac{T}{8}) (\frac{P_0}{P})$$
 isothermal, isobaric

$$\frac{C_{A} = \frac{F_{A}}{V}}{V} = \frac{F_{A}}{V_{0}(1+2X)} = \frac{F_{A}(1-X)}{V_{0}(1+2X)} = \frac{C_{A} \circ V_{0}(1-X)}{V_{0}(1+2X)} = \frac{C_{A} \circ V_{0}(1-X)}{V_{0}(1+2X)} = \frac{C_{A} \circ V_{0}(1-X)}{V_{0}(1+2X)}$$

4. combine
$$-(A = K (\frac{1-x)^2}{(1+\xi X)^2})$$

$$V = \frac{F_{Ao}}{K c_{Ao}^2} \int_{0}^{X} \frac{(1+2x)^2}{(1-x)^2} dx$$

$$V = \frac{v_0}{k C_{A_0}} \left[22(1+2) \ln(1-x) + 2^2x + \frac{(1+2x)^2x}{1-x} \right]$$

Effect of E on convension

> The effect of change in the total number of moles in the gas phase on the relationship between conversion & volume. [for constant T & P]

 \rightarrow no change in number of moles in the reaction ex: $A \rightarrow B$ $\delta = |-| = 0$ E=408 =0

- The fluid moves through the reactor at constant volumetric flow rate 7= Vo , as the conversion increases.

CUSE 2: ETO 5TO

-> pecreuse in the number of moles in the gas phase

 $2A \rightarrow B$ take A as Basis

- > The volumetric gas flow rate decreases & the conversion increases
- Gras molecules will have longer residence time resulting in higher conversion

V = TT [higher residence time, TX]

Case 3: £70 570

- Increase in the total number of moles in the gas phase

$$A \rightarrow 2B$$

- -> The volumetric flow rate will increase as the conversion increases
- -> The molecules would spend less time in the reactor, resulting in smaller residence time ->

less conversion

$$\sqrt{L} = \frac{V}{761}$$
 [lower residence time, \sqrt{X}]

Pressure Drop in Reactors

→ The effect of pressure drop on the rate of reaction when sizing a lig reactor -> negligable (incompressible) → In gus phase, the concentration of the reacting species is proportional to the total pressure.

Pressure Drop & the rate law

$$C_i = C_{MO} \left[\frac{\mathcal{O}_i + \mathcal{V}, \chi}{1 + \mathcal{E} \chi} \right] \frac{T_0}{T} \frac{P}{P_0}$$

$$\theta i = \frac{F_{io}}{F_{Ao}}$$
 $\xi = \frac{5}{5}$ $\frac{V_{i}}{f_{Ao}} = \frac{5}{5}$ $\frac{V_{i}}{f_{Ao}} = \frac{5}{5}$ $\frac{V_{i}}{f_{Ao}} = \frac{5}{5}$

 $Ex: 2A \rightarrow B$

[Differential from of mole Balance]

3. Storchiometry
$$C_A = C_{AO} \left(\frac{1-X}{1+\xi X} \right) \frac{T_o}{T} \frac{P}{P_o}$$

4 combine & assume isothermal

$$-\Upsilon_{A}^{\prime} = \kappa \left(20^{2} \frac{(1-\kappa)^{2}}{(1+\kappa)^{2}} \left(\frac{P}{P_{0}}\right)^{2}\right)$$

$$\frac{JX}{JW} = \frac{K C_{A_o}^2}{F_{A_o}} \frac{(1-\chi)^2}{(1+2\chi)^2} \left(\frac{P}{P_o}\right)^2$$

* we now need to relate the pressure drop to the catalyst weight in order to determine the conversion as afunction of the catalyst weight.

* The majority of gas phase reactions are cutalyzed by passing the reactant through a packed bed of cutalyst particles

Eurgen Equation

$$\frac{\partial P}{\partial Z} = \frac{-G_1}{g_{g_c} D_p} \left(\frac{1-\phi}{\phi^3} \right) \left[\frac{150(1-\phi)M}{D_p} + \frac{1.75G}{Turbulent} \right]$$

Dp = Diameter of particle in bed

M= Viscosity of gas passing through the bed

g= gas density

G= pu = superficial mass velocity

(1-0) = flaution of solids

-> PBR operates at steady state

$$\rightarrow \int = \int_0 \frac{\gamma_o}{\gamma} = \int_0 \frac{T_o}{T} \frac{P}{P_o} \frac{f_{To}}{f_T}$$

-> Combine:

$$\frac{dP}{dz} = \frac{-G}{9c Dp f_6} \left(\frac{1-\phi}{\phi^3}\right) \left[\frac{150 (1-\phi)\mu}{Dp} + 1.75 G\right] \frac{P_6}{P} \frac{T}{T_0} \frac{F_7}{F_{10}}$$

Bo -> constant that depends only on the properties of the packed bed (atm/ft) or (Pa/m)

- The catalyst- weight up to a distance 2 down the reactor:

$$W = ZA_c g_c = ZA_c (1-0) f_c \rightarrow density of solid catalyst volume of solids$$

- Rewrite in terms of Catalyst weight

$$\frac{dP}{dW} = \frac{-\beta \circ}{A_{c}(1-\phi)f_{c}} \frac{P_{o}}{P} \frac{T}{T_{o}} \frac{F_{c}}{F_{1o}}$$

$$\Rightarrow |ef \qquad d = \frac{2 \beta_0}{\beta_c (1 - \phi) f_c} \qquad \frac{1}{\rho_0} \qquad \Rightarrow \frac{\rho}{\rho_0} \qquad \Rightarrow \frac{\rho}{\rho_0}$$

$$\frac{dy}{dw} = -\frac{\lambda}{2y} \frac{T}{T_0} \frac{F_T}{F_{T_0}}$$

$$\Rightarrow \frac{\int (P/P_0)}{\int W} = -\frac{\lambda}{2} \frac{1}{(P/P_0)} \frac{T}{T_0} (1+\xi X) \text{ for single reactions}$$

* when & is negative DP will be less [higher pressure] than that for a=0

* When & is positive DP will be greater [lower pressure] than that for & = 0

- for isothermal reactions:

$$\frac{f(P/\rho_0)}{dw} = -\frac{d}{z} \frac{1}{P/\rho_0} (1+4x)$$

- when w=0 4 y=1

* Conversion when no DP higher than conversion with DP

* Concentration when no DP < concentration with DP

Example 1: Gas Phase Reaction in PBR for δ=0

Gas Phase reaction in PBR with $\delta = 0$ (Analytical Solution)

$$A + B \rightarrow 2C$$

Equimolar feed of A and B and:

 $k_{\rm A} = 1.5 {\rm dm^6/mol/kg/min}$ $\alpha = 0.0099 {\rm kg^{-1}}$

Find X at 100 kg

$$C_{A0} \xrightarrow{A_C} X = ?$$

$$C_{B0} \xrightarrow{A_C} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc X = ?$$

Equimolar Fro 20.5

1. mole Balance
$$\frac{dX}{dW} = \frac{-r_{A}}{F_{AB}}$$

$$C_{B} = C_{AO} \left(\frac{\theta_{B} + v_{i} \chi}{1 + c_{i} \chi} \right) \frac{\rho}{\rho_{o}}$$

$$\Theta_{\mathcal{B}} = 1$$
 $V_i = -1$ $S = 0$

4. y 3 w relationship

$$\frac{dy}{dw} = -\frac{d}{2y}$$

$$\frac{dy}{dw} = -\frac{d}{2y}$$

$$\frac{dy}{dw} = -\frac{d}{2y}$$

$$\frac{dy}{dw} = -\frac{d}{2w}$$

$$\frac{dw}{dw} = -\frac{d}{2w}$$

$$\frac{dw}{dw} = -\frac{d}{2w}$$

$$\frac{dw}{dw} = -\frac{d}{2w}$$

$$\frac{dw}{dw} = -\frac{dw}{dw}$$

$$\frac{dw}{dw} =$$

 $\frac{\partial X}{\partial w} = \frac{k (Ao^2 (1-X)^2 (1-dw))}{F_{AO}}$

seperate S Integrate

Fro dX = K(A6 (1-X)2 (1-QW) dW

$$\frac{\partial X}{(1-X)^2} = \frac{K C R o^2}{F_{A0}} \left[1 - d W \partial W \right]$$

$$\frac{\chi}{1-\chi} = \frac{K \cos^2 \left(\omega - \frac{\omega^2}{2}\right)}{F_{AO}}$$

Boundary conditions: W=0 X=0, W=W X=X

$$\frac{X}{1-X} = \frac{1.5 (0.1)^2 (100 - 0.0099(100)^2)}{0.5}$$

Example 2: Gas Phase Reaction in PBR for δ≠0

The reaction $A+2B \rightarrow C$ is carried out in a packed bed reactor in which there is pressure drop. The feed is stoichiometric in A and B.

$$P_0 = 10 \text{ atm}$$
 $F_{A0} = 2 \text{ mol/min}$
 $C_{A0} = 0.2 \text{ mol/dm}^3$

Plot the conversion and pressure ratio $y = P/P_0$ as a function of catalyst weight up to 100 kg.

Additional Information

 $k_A = 6 \text{ dm}^9/\text{mol}^2/\text{kg/min}$

 $\alpha = 0.02 \text{ kg}^{-1}$

3. Stoichiometry
$$C_{A} = \frac{C_{Ao}}{(1+2\times)} y$$

$$C_{B} = C_{A_{0}} (O_{B} - 2X)$$

$$(1+2X)$$

$$9_{B} = 2$$

4 Relationship
$$\frac{dy}{dw} = -\frac{d}{2y} \left(1 + \xi X\right)$$

$$\xi = y_{A0} \delta \qquad = \frac{1}{2+1} \left(1-2-1 \right) = \left[\frac{1}{3} \right] - 2 = -\frac{2}{3}$$

ightarrow what if we decrease the catalyst size by a factor of 4 4 increase the entering pressure

$$\Delta = \frac{2}{Ac(1-\phi) f_c P_0} \qquad \beta_0 = \frac{2}{Ac(1-\phi) f_c P_0} \left[\frac{G_1(1-\phi)}{f_0 g_c D_P \phi^3} \left[\frac{G_2(1-\phi) \mu}{D_P} + \frac{1.75 G_1}{D_P} \right] \right]$$
Laminar

-> Using Avg molecular weight of gas & I deal gas Law

→ Substitute:

$$X = \frac{2 RT MW}{Ac J_c q_c P_o^2 D_P \emptyset^3} G \left[\frac{150 (1-10)M}{D_P} + 1.75 G \right]$$

1) If Laming & Flow is dominant

* we only consider change in G, Dr, Ac, Po,

$$\frac{\text{Case I}}{\text{case 2}} \qquad \qquad d_2 = \alpha_1 \left(\frac{G_{12}}{G_{11}} \right) \left(\frac{T_{02}}{T_{01}} \right) \left(\frac{P_{C1}}{P_{C2}} \right)^2 \left(\frac{P_{01}}{P_{02}} \right)^2$$

2) If Turbulent flow is dominent

$$\frac{\text{case I}}{\text{case I}} \qquad \qquad \alpha_2 = \alpha_1 \left(\frac{G_{12}}{G_{11}} \right)^2 \left(\frac{T_{02}}{I_{01}} \right) \left(\frac{A_{C1}}{A_{C2}} \right) \left(\frac{P_{01}}{P_{02}} \right)^2 \left(\frac{D_{P1}}{D_{P2}} \right)$$

$$\rightarrow$$
 if the mass flow rate \dot{m} is the same for two cases $\dot{m} = \frac{\dot{m}}{Ac}$

$$d_2 = d_1 \left(\frac{Ac_1}{Ac_2} \right)^3 \left(\frac{\tilde{l}_{02}}{\tilde{l}_{01}} \right) \left(\frac{P_{01}}{P_{02}} \right)^2 \left(\frac{D_{P1}}{D_{P2}} \right)$$

Ex: Increase Po by factor of 3 & Decrease Do by factor of 4

1 Laminar

$$d_2 = d_1 \left(\frac{P_{01}}{3P_{01}}\right)^2 \left(\frac{4DP_1}{DP_1}\right)^2 = \frac{16}{9} d_1$$

2) Tur bulent

$$d_2 = \alpha_1 \left(\frac{\rho_{01}}{3\rho_{01}} \right)^2 \left(\frac{4D\rho_1}{D\rho_1} \right) = \frac{4}{9} \alpha_1$$

Chapter 6: Isothermal reactor besign: [Moles & Molar Flow rates]

The molar flow rate Balance Algorithim

- \rightarrow Membrane reactors ξ multiple reactions taking place in the gas phase \Rightarrow necessary to use mular flow rates instant \mathcal{A} conversion
- → Modify the algorithim by using Concentrations for liquids & molar flow rates for gases as dependent variables
 - * In molar flow rate & concentration Algorithim -> mole Balance on each & every species

Algorithim

- 1. Mole Balance on all species present
- 2. Rate Law
- 3. Relative rates of reaction
- 4. Combine

* Liquid Phase

 \rightarrow No change in either volume V or volumetric flow rate $v_0 \rightarrow$ (orcentration is the preferred design variable

Relative rates of Reaction
$$\frac{\Gamma_{R}}{-9} = \frac{\Gamma_{B}}{-b} = \frac{\Gamma_{C}}{C} = \frac{\Gamma_{D}}{d}$$
 # used to couple the mole Balances

1. Mole Balance on each species:
$$\frac{\partial F_{R}}{\partial v} = r_{R}$$
 $\frac{\partial F_{B}}{\partial v} = r_{B}$ $\frac{\partial F_{C}}{\partial v} = r_{C}$

$$\frac{df_c}{dV} = r_c$$

$$-f_{A} = K \left[C_{A} C_{B}^{2} - \frac{C_{C}}{K_{C}} \right]$$

$$\frac{r_A}{-1} = \frac{r_B}{-2} = \frac{r_C}{1}$$

4. Stoichiometry [conc. in terms of molar flow rates)

-> liquid Phase Use concentrations CA, CB

$$\frac{\partial P}{\partial w} = -\frac{d}{2P} \left(\frac{T}{T_0} \right) \left(\frac{P_0}{P} \right) \qquad P = \frac{P}{P_0}$$

Table 6-1 Mole Balances for Liquid-Phase Reactions

$$\frac{dC_{\rm A}}{dt} = r_{\rm A}$$

and
$$\frac{dC_{\rm B}}{dt} = \frac{b}{a}r_{\rm A}$$

$$V = \frac{v_0 (C_{A0} - C_A)}{-r_A}$$
 and $V = \frac{v_0 (C_{B0} - C_B)}{-(b/a)r_A}$

$$V = \frac{v_0(C)}{-C}$$

$$v_0 \frac{dC_A}{dV} = r_A$$

$$v_0 \frac{dC_{\rm A}}{dV} = r_{\rm A}$$
 and $v_0 \frac{dC_{\rm B}}{dV} = \frac{b}{a} r_{\rm A}$

$$v_0 \frac{dC_A}{dW} = r'_A$$

$$v_0 \frac{dC_A}{dW} = r'_A$$
 and $v_0 \frac{dC_B}{dW} = \frac{b}{a} r'_A$

1. Mole balances:

CSTR	PFR	PBR
$V = \frac{F_{A0} - F_{A}}{-r_{A}}$	$\frac{dF_{\rm A}}{dV} = r_{\rm A}$	$\frac{dF_{\rm A}}{dW} = r_{\rm A}{}'$
$V = \frac{F_{\rm B0} - F_{\rm B}}{-r_{\rm B}}$	$\frac{dF_{\rm B}}{dV} = r_{\rm B}$	$\frac{dF_{\rm B}}{dW} = r_{\rm B}{}'$
$V = \frac{F_{\rm C0} - F_{\rm C}}{-r_{\rm C}}$	$\frac{dF_{\rm C}}{dV} = r_{\rm C}$	$\frac{dF_{\rm C}}{dW} = r_{\rm C}{}'$
$V = \frac{F_{\mathrm{D0}} - F_{\mathrm{D}}}{-r_{\mathrm{D}}}$	$\frac{dF_{\rm D}}{dV} = r_{\rm D}$	$\frac{dF_{\rm D}}{dW} = r_{\rm D}{'}$

We shall continue the algorithm using a PBR as an example.

2. Rates:

Rate Law

$$-r_{A}' = k_{A} C_{A}^{\alpha} C_{B}^{\beta}$$

Relative Rates

$$\frac{r'_{A}}{-a} = \frac{r'_{B}}{-b} = \frac{r'_{C}}{c} = \frac{r'_{D}}{d}$$

then

$$r'_{\rm B} = \frac{b}{a} r'_{\rm A}$$
 $r'_{\rm C} = -\frac{c}{a} r'_{\rm A}$ $r'_{\rm D} = -\frac{d}{a} r'_{\rm A}$

3. Stoichiometry:

Concentrations

$$C_{A} = C_{T0} \frac{F_{A}}{F_{T}} \frac{T_{0}}{T} p \qquad C_{B} = C_{T0} \frac{F_{B}}{F_{T}} \frac{T_{0}}{T} p$$

$$C_{C} = C_{T0} \frac{F_{C}}{F_{T}} \frac{T_{0}}{T} p \qquad C_{D} = C_{T0} \frac{F_{D}}{F_{T}} \frac{T_{0}}{T} p$$

$$\frac{dp}{dW} = \frac{-\alpha}{2p} \frac{F_{T}}{F_{T0}} \frac{T}{T_{0}}, \quad p = \frac{P}{P_{0}}$$

Total molar flow rate: $F_{\rm T} = F_{\rm A} + F_{\rm B} + F_{\rm C} + F_{\rm D} + F_{\rm I}$

4. Combine:

Appropriate reactor mole balance on each species

Rate law

Concentration for each species

Pressure-drop equation

5. Evaluate:

- 1. Specify and enter parameter values: k_A , C_{T0} , α , β , T_0 , a, b, c, d
- 2. Specify and enter entering molar flow rates: $F_{\rm A0}$, $F_{\rm B0}$, $F_{\rm C0}$, $F_{\rm D0}$, and final volume, $V_{\rm final}$

6. Use an ODE solver.

Many times we will let the ODE solver replace Step 4, Combine.

Algorithim to a microreactor

Micro reactors are characterized by their high surface great to volume ratios [tubes or channels]

Reduces or eleminates heal- 9 mass transfer resistences

surface catalyzed reactions can be greatly facilitated

- · hot spots in highly exothermic reactions can be minimized
- highly exothermic reactions can be carried out isothermally
- * Used in production of toxic or explosive materials
- * Include shorter Residence time.
- * Heal- Q, can be added or taken away by the fluid flowing perpindicular to the reaction channels.

 In modeling Assume in plug flow

Example 6-1 Gas-Phase Reaction in a Microreactor—Molar Flow Rates

The gas-phase reaction

$$2NOC1 \longrightarrow 2NO + C1_2$$

is carried out at 425°C and 1641 kPa (16.2 atm). Pure NOCl is to be fed, and the reaction follows an elementary rate law.² It is desired to produce 20 tons of NO per year in a microreactor system using a bank of ten microreactors in parallel. Each microreactor has 100 channels with each channel 0.2 mm square and 250 mm in length.

- (a) Plot and analyze the molar flow rates as a function of volume down the length of the reactor. The volume of each channel is 10⁻⁵ dm³.
- **(b)** What is the reactor volume necessary to achieve 85% conversion?

$$A \rightarrow B + \frac{1}{2}C$$

elementary Rate Law

$$\frac{\partial A}{\partial L^{B}} = L^{B}$$

$$\frac{\Gamma_A}{-1} = \frac{\Gamma_B}{1} = 2 \Gamma_0$$

4. Stoichiometry [Gas phase]

5. Combine

$$-r_{A} = K C_{To}^{2} \left(\frac{f_{A}}{f_{T}}\right)^{2}$$

$$\frac{\partial F_{A}}{\partial V} = K \left(\int_{0}^{2} \left(\frac{F_{A}}{F_{T}} \right)^{2} \right)$$

$$\frac{dFB}{dV} = -K Go^2 \left(\frac{FA}{FT}\right)^2$$

$$\frac{dF_c}{dV} = \frac{1}{2} K C_{10}^2 \left(\frac{f_A}{F_T}\right)^2$$

Differential Equations

[Combined]

$$\Rightarrow C_{T0} = \frac{P_o}{RTo} = \frac{16.2 \text{ qtm}}{0.08206 \text{ atm·lm}^2 698} = 0.282 \text{ mol/Jm}^3$$

Membrane Reactors

* Used to increase conversion when the reaction is thermodinamically limited, & to increase the selectivity when multiple reactions occur.

 \rightarrow These higher conversions are the result of the chatchier's principle, you can remove reaction products $\frac{1}{2}$ drive the reaction to the right.

* To accomplish this a membrane that is permeable to the reaction product, but impermeable to all other species is placed around the reacting mixture.

- Inert membrane reactor with Catalyst pellets on the feed side CIMRCF). membrane is inert & serves as a barrier to the reactanst & some of the products.
- (atalytic membrane reactor (CMR): The catalyst is deposited directly on the membrane, 4 only specific reaction products are able to exit the permate side

A = 3B +C

 $W = f_b V \rightarrow \text{solids weight}$ $f_b = (1 - \phi) f_c \rightarrow \text{bulk solid density}$ $f_c \rightarrow \text{density of solids}$

A & C stay benind , B goes through the membranz

Mole Balances

PFR:

$$\frac{\partial V}{\partial F^{\mu}} = CA$$

Within the reactor

$$\frac{dF_{C}}{dV} = r_{C}$$

In - out - out membrane + Generation = 0
$$F_{Bo} - F_{B} - R_{B} \Delta V + r_{B} \Delta V = 0$$

RB = moles B leaving through the sides

Volume of Reactor

* The rate of Transport B out through the membrane (RB), is the product of the moder flux of B normal to the membrane (WB), $\frac{8}{4}$ the surface area per unit volume of reactor.

$$w_{B} = K'_{c} \left(C_{B} - C_{BS} \right) = \frac{\text{molar flow rate through membrane}}{\text{Surface area of membrane}} \left[\frac{\text{mol}}{\text{m}^{2}.\text{S}} \right]$$

transfer coefficient

q: membrane surface Area =
$$\frac{\pi DL}{Reactor}$$
 = $\frac{4}{D}$ $\left[\frac{m^2}{m^3}\right]$

All the preceding elementary dehydrogenation reactions described above can be represented symbolically as

$$A \rightleftharpoons B + C$$

and will take place on the catalyst side of an IMRCF. The equilibrium constant for this reaction is quite small at 227°C (e.g., $K_C = 0.05 \text{ mol/dm}^3$). The membrane is permeable to B (e.g., H₂) but not to A and C. Pure gaseous A enters the reactor at 8.2 atm and 227°C ($C_{T0} = 0.2 \text{ mol/dm}^3$) at a molar flow rate of 10 mol/min.

The rate of diffusion of B out of the reactor per unit volume of reactor, $R_{\rm B}$, is proportional to the concentration of B (i.e., $R_B = k_C C_B$).

- (a) Perform differential mole balances on A, B, and C to arrive at a set of coupled differential equations to solve.
- (b) Plot and analyze the molar flow rates of each species as a function of reactor volume.
- (c) Calculate the conversion of A at $V = 500 \text{ dm}^3$.

Additional information: Even though this reaction is a gas-solid catalytic reaction, we will use the bulk catalyst density in order to write our balances in terms of reactor volume rather than catalyst weight (recall $-r_A = -r'_A \rho_b$). For the bulk catalyst density of $\rho_b = 1.5 \text{ g/cm}^3$ and a 2-cm inside-diameter tube containing the catalyst pellets, the specific reaction rate, k, and the transport coefficient, $k_{\rm C}$, are $k=0.7~{\rm min^{-1}}$ and $k_{\rm C} = 0.2~{\rm min^{-1}}$, respectively.

1. Mole Balances

$$\frac{\partial V}{\partial F_{c}} = r_{c}$$

2. Rate Law

$$-r_{A} = K \left[C_{A} - \frac{C_{B} C_{C}}{K_{C}} \right] \qquad K = 0.7 \text{ min}$$

3. Relative Rates

4. Transport Law

5. Stoichiometry

$$\frac{\partial F_{A}}{\partial V} = r_{A}$$

EX: Isothermal membrane Reaction with no DP, membrane only permeable to C [PBR]

$$A \rightleftharpoons B + 3C$$

1. Mole Balances

$$\frac{qm}{q \, L^{W}} = L^{W}$$

2. Rate Law

$$\frac{r_{\beta}}{-1} = \frac{r_{\beta}}{1} = \frac{r_{c}}{3}$$

- Combine in polymath with givens:

Semi batch Reactors

Semi batch reactors can be very effective in maximizing selectivity in liquid phase reactions.

$$A + B \xrightarrow{K_D} D$$
 [Desired] $C_D = K C_D^2 C_B$
 $C_D = K C_D^2 C_B$

Selectivity =
$$\frac{r_D}{r_U} = \frac{k_D C_A^2 C_B}{k_V C_A C_B^2} = \frac{k_D}{k_V} \frac{C_A}{C_B}$$

Mole Balances

-> Mole Balance on A

$$1N - 00+ + Gren = Accumulation$$

$$0-0 + r_AV(t) = \frac{JN}{Jt}$$

$$r_A V = \frac{\partial V}{\partial t} = \frac{\partial (C_A V)}{\partial t} = \frac{V}{\partial t} + \frac{\partial V}{\partial t}$$

* The volume V varies with time , volume at any time > overall mass balance

mass in - mass out + Gen = Acc
$$\dot{m}_0 - 0 + 0 = \frac{dm}{dt}$$

$$g V_0 = \frac{dgV}{dt}$$

> for constant g=go [lig]

$$\frac{\partial V}{\partial t} = V_0$$
 at $V = V_0$ $\frac{2}{3} t = 0$

Mole Balance on species A

$$|n - out + Gen = Acc$$

 $|n - out + Gen = Acc$
 $|n - out + Gen = Acc$
 $|n - out + Gen = Acc$

$$\frac{\partial V}{\partial t} = V_0$$

Mole Balance on species B

$$In - OUF + Gen = ACC$$

 $F_{BO} - O + r_{B}V = \frac{\partial N_{B}}{\partial t_{A}}$

$$\frac{\partial f}{\partial CB} = L^{B} + \frac{(CB^{0} - CB) L^{2}}{(CB^{0} + CB)}$$

Mole Balance for C &D ---

$$\frac{\partial C_c}{\partial t} = C_c - \frac{C_c V_o}{V}$$

$$\frac{\partial C_D}{\partial t} = C_D - \frac{C_D V_O}{V}$$

* If the reaction order is other than zero or first order, or non-isothermall

Numerical techniques.

Example 6-3 Isothermal Semibatch Reactor with Second-Order Reaction

The production of methyl bromide is an irreversible liquid-phase reaction that follows an elementary rate law. The reaction

$$CNBr + CH_3NH_2 \rightarrow CH_3Br + NCNH_2$$

is carried out isothermally in a semibatch reactor. An aqueous solution of methyl amine (B) at a concentration of 0.025 mol/dm³ is to be fed at a volumetric rate of 0.05 dm³/s to an aqueous solution of bromine cyanide (A) contained in a glass-lined reactor. The initial volume of liquid in the vat is to be 5 dm³ with a bromine-cyanide concentration of 0.05 mol/dm³. The specific reaction rate constant is

$$k = 2.2 \text{ dm}^3/\text{s} \cdot \text{mol}$$

Solve for the concentrations of bromine cyanide (A), methyl amine (B), methyl bromide (C), and cyanamide (D), and the rate of reaction as a function of time, and then analyze your results.

A+B
$$\rightarrow$$
 C+D
 $C_{80} = 0.025 \text{ mol}/d\text{m}^3$
 $V_0 = 0.05 \text{ dm}^3/\text{S}$
 $V_0 = 5 \text{ dm}^3$
 $C_{80} = 6.05 \text{ mol}/\text{dm}^3$

2. Exementary Rate Law

$$\frac{\int A}{-1} = \frac{\int B}{-1} = \frac{\int C}{1} = \frac{1}{1}$$

4 combine

$$\frac{\partial C_c}{\partial t} = K C_R C_B - \frac{V_0 C_C}{V}$$

$$\frac{dCp}{dt} = KC_AC_B - \frac{V_6C_D}{V}$$

6. Evaluate in polymath.

Equilibrium Conversion in semiloy-th Reactors with reversible Reactions.

$$A + B \rightleftharpoons C + D$$

$$C_c = C_D = \frac{N_{Ro} \chi}{V}$$

Three forms of Mole Balance

Chapter 8: Multiple Reactions

Types of Reactions

Parallel reactions (competing reactions): Reactions where the reactant is consumed by two different reaction pathways to form different products

$$A \rightarrow D$$

$$A \rightarrow 0$$

2. Series Reaction (consecutive reactions): Reactions where the reactant forms an Intermediate product, which reacts further to form another product

$$A \xrightarrow{K'} B \xrightarrow{K^{5}} C$$

3 Independent feactions: occur at the same time but neither the products nor the reactants react with themselves or one another $A \to B$ (\to D

4. Complex Reactions: Multiple reactions that involve combinations of series $\frac{c}{2}$ independent parallel reactions. $A+B \rightarrow C+D$

* with multiple reactors either molar flow rate or number of moles must be used (not conversion)

Selectivity

→ Desired & Undesired Reautions

In parallel sequence form. A \xrightarrow{KO} D \star D \to Desired

A _______ VU → Undesired

In series sequence A KD D Ku U

→ We want to minimize the formation of U & maximize the formation of D

selectivity tells how one product is favored over the other (in multiple reactions)
Instantaneous selectivity of D with respect to U is the ratio of the rate of formation of D to
the rate of formation of U

- Instantaneous Selectivity Solv = 10
- Overall Belectivity $S_{D/U} = \frac{F_D}{F_U} = \frac{E_{xit} \text{ moder flow rate of- desired Product}}{E_{xit} \text{ moder flow rate of- undesired Product}}$
- Overall Selectivity for $\widetilde{S}_{DU} = \frac{ND}{NV}$ (Number of moles at the end of Reaction time)

 Batch Reactor

Yield

Reaction yield based on the ratio of reaction rates

- \rightarrow Yield at a point can be defined as the ratio of the reaction rate of a given product to the reaction rate of the key reactant (Basis of calculations A)
 - Instantaneous yield $Y_{p} = \frac{\Gamma_{0}}{-\Gamma_{p}}$

Reaction yield based on the ratio of major flow rates

 \rightarrow hatio of moles of product formed at the end of a reaction to the number of moles of key reactant A, that have been consumed.

$$\widetilde{\gamma}_D = \frac{N_D}{N_{AO} - N_A}$$

$$\widetilde{Y}_{D} = \frac{F_{D}}{F_{AO} - F_{A}}$$

$$\frac{6k:}{A+B} \xrightarrow{K_1} D$$

5_{D/V} =
$$\frac{r_D}{r_U}$$
 = $\frac{K_1 CA^2 CB}{K_2 CA CB}$ = $\frac{K_1}{K_2}$ CA

To maximize selectivity ul- D, use high conc of A & PFR reactor.

Algorithim for multiple reactions

1) Mole Balance

Flow

Batun

for each & every species

2) Rates

→ Rate law for each reaction -ria = Kin CA CB

$$\rightarrow$$
 Net Rates $r_A = \sum_{i=1}^{n} r_{iA} + r_{iA} + \cdots$

$$\frac{r_{iA}}{\alpha_{i}} = \frac{r_{iC}}{b} = \frac{r_{iC}}{c} = \frac{r_{iD}}{b}$$

3) Stiochiometry

$$\Rightarrow G_{1} = C_{10} \frac{F_{n}}{F_{T}} \left(\frac{P}{P_{0}} \right) \left(\frac{T_{0}}{T} \right)$$

$$\rightarrow$$
 liquid $C_A = \frac{F_A}{V_0}$

Parallel Reactions

Maximizing the Desired Product in Parallel Reactions

$$\Rightarrow Instantaneous Selectivity S_{DU} = \frac{r_D}{r_U} = \frac{-G_{R1}}{A_U e^{-G_{R1}}} \frac{\alpha_1}{C_B} \frac{\beta_1}{A_U} \frac{\beta_1}{C_B}$$

Ly Maximize Spru to maximize Desired product production.

1) Temperature [affects k]

1 Ep- Eu ⇒ Je

Specific rate of desired reaction to increases more rapidly with increasing T Tuse higher T for more DJ

V Ep- Ev ⇒ Îe

specific rate of desired KD increases less rapidly with increasing T (Use lower T for desired, not so low)

2 Concentrations

large CA (PFR, Batch)

Small CA (CSTR)

3.
$$\beta_1 > \beta_2 \rightarrow \beta_1 - \beta_2 > 0$$

large CB (PFR, Batun)

Small (g (cstr)

Concentration Requirements & Reactor Selection

- 1. PBR or PFR: concentration is high at the inlet & progressively drops to outlet conc.
- 2. CSTR: concentration is always at its lowest value [exit conc.]
- 3. Batch: concentration is high at t=0 4 progressively drops with increasing time
- 4. Semi batch: Concentration of one reactant is high at t=0 & progressively arops with time, conc of other reactant can be kept low at all times

	d, 7 d2 (1 CA)	dicd2 (VCA)
β17β2 (16)	Batun reautor / PFR & PBR	PFR or PBR -> Side Streams for I CA
	(no inert, high? no diluent)	δ emihat $M o \delta$ lowly feed A to high B
		CSTR's in Series
β ₁ < β ₂ (dC _β)	PFR/PBR → side streams for UCR	CSTR
11 1- 57	Semibaltch → Slowly add (18 to high (4	PFR or PBR with high recycle
	CSTR'S in beries	-) dilute feed with inert
		low P

Ex: Conditions to maximize Selectivity

$$A + C \xrightarrow{kp} D$$
 $r_0: 800 e$
 $r_0: 800 e$

2. Lone
$$d_1 - d_2 = (d_2 > d_1)$$

0.5-1 = 0.5 \rightarrow lowest (A possible

- -> kp increases faster than Ku as the temp increased (operate at high temp)
- -> CA low to maximile Co with respect to Cu
- → Changing Co doesnot influence selectivity > high Co will increase the reaction rate & oftset the Slow reaction that is caused by low CA

Use: PFR/PBR with Ca in side streams Demibation feeding in slowly

FYZ:
$$A + C \xrightarrow{K_D} D$$
 $r_D: 800 e \xrightarrow{-\frac{2000}{T}} C_A C_C$
 $A + C \xrightarrow{K_{U_1}} U_1$
 $r_U: lo e \xrightarrow{\frac{300}{T}} C_A C_C$
 $D + C \xrightarrow{K_{U_2}} U_2$
 $r_U: lo e \xrightarrow{\frac{3000}{T}} C_C C_D$

-> Maximile Jolu, & Spluz by provious ex

- -> ED > EV -> low T conflict with Som
- → du>du2 → Kerp Ca high conflict with SD/U
- -> high Cc will offset the rate decrease due to low CA
- law Cp reduses the production of Uz conflict with Spru

* Consider relative magnitude of Soru, & SD/Uz as a function of position in PFR

- PFR with side streams feeding low CA
 - · High T , Ce is initially high , CA islow

Initially Cc = 0 → r_{Uz} = 0 Both gradually increase down the reactor
 → high J_{D'Uz} [Cp is low] → gradually decreases down the reactor.

when significant amount of D have formed 50/uz becomes significant with respect to 50/uzAt this point $\rightarrow 10wT$, high C_R , $\frac{9}{4}10w$ C_C

If a CSTR were used with $C_A = 1 \text{ mol/L}$ and $C_D = 1 \text{ mol/L}$, at what temperature should the reactor be operated?

$$A+C \xrightarrow{k_D} D \text{ desired} \qquad A+C \xrightarrow{k_{U1}} U_1 \text{ undesired} \qquad D+C \xrightarrow{k_{U2}} U_2 \text{ undesired}$$

$$r_D = 800e^{\frac{-2000}{T}} C_A^{0.5} C_C \qquad r_{U_1} = 10e^{\frac{-300}{T}} C_A C_C \qquad \qquad r_{U_2} = 10^6 e^{\frac{-8000}{T}} C_C C_D$$

$$Sp_{N_1+V_2} = \frac{800 e^{-\frac{2000}{T}} CA^{0.5} CC}{10 e^{-\frac{3000}{T}} CA CC + 10^6 e^{-\frac{80000}{T}} CC CD}$$

$$\frac{500 e^{-\frac{2000}{T}} (1)^{0.5}}{10 e^{\frac{-300}{T}} (1) + (0^{\frac{1}{6}} e^{-\frac{7000}{T}} (1)}$$

Plot T VS SD/UITUZ to Find T that maximizes So/UITUZ

Calculate the yield of forming B in a **CSTR** and PFR when the conversion of A is 90% and C_{A0} = 4 mol/L. The following reactions occur in the reactor:

$$A \xrightarrow{k_B} B$$
 $r_B = k_B = 2 \frac{\text{mol}}{L \cdot \text{min}}$

$$A \xrightarrow{k_C} C$$
 r

$$A \xrightarrow{k_C} C$$
 $r_C = k_C C_A$ $k_C = 1 \text{ min}^{-1}$

What is the expression for the yield of B for a CSTR?

$$\tilde{y}_{g} = \frac{F_{g}}{F_{RO} - F_{R}}$$

We know C_{A0} and C_A when X_A =0.9. How do we get C_B ?

$$- F_{\beta} + r_{\beta} V = 0 \qquad \rightarrow - C_{\beta} V_{0} + r_{\beta} V = 0$$

$$f_{B} = \frac{C_{B} V_{0}}{V} = \frac{C_{B}}{T}$$

$$2 = \frac{C_B}{\gamma} \rightarrow C_B : 2\gamma$$

Use the mole balance on A to find τ (at 90% conversion)

$$A \xrightarrow{k_B} B$$
 $r_B \neq k_B = 2 \frac{\text{mol}}{L \cdot \text{min}}$

$$A \xrightarrow{k_B} B \quad r_B = k_B = 2 \frac{\text{mol}}{L \cdot \text{min}}$$

$$A \xrightarrow{k_C} C \quad r_C = k_C C_A \left(k_C = 1 \text{ min}^{-1} \right)$$

$$\tilde{y}_B = \frac{c_R}{c_{Ao}-c_A}$$

- to find CR

> to find T

$$\frac{1}{1} = \frac{4 - 0.4}{2 + 0.4} = 1.5 \text{ min}$$

$$\frac{C_B}{T} = 2 \qquad \frac{C_B}{1.5} = 2 \qquad C_B = 3$$

$$\frac{\widetilde{y}_{\beta}}{y - 0.4} = 0.83$$

Calculate the yield of forming B in a CSTR and PFR when the conversion of A is 90% and C_{A0} = 4 mol/L. The following reactions occur in the reactor:

$$A \xrightarrow{k_B} B$$
 $r_B = k_B = 2 \frac{\text{mol}}{L \cdot \text{min}}$

$$A \xrightarrow{k_C} C$$
 $r_C = k_C C_A$ $k_C = 1 \text{ min}^{-1}$

$$\frac{\tilde{y}_{B}}{\tilde{y}_{B}} = \frac{\tilde{f}_{B}}{\tilde{f}_{AO} - \tilde{f}_{A}} = \frac{\tilde{C}_{B}}{\tilde{C}_{AO} V_{O} - \tilde{C}_{A} V_{O}} = \frac{\tilde{C}_{B}}{\tilde{C}_{AO} - \tilde{C}_{A}}$$

$$\frac{\partial f_{\mathcal{S}}}{\partial V} = r_{\mathcal{S}} \longrightarrow \underbrace{\frac{\partial C_{\mathcal{S}} \mathcal{V}_{\mathcal{S}}}{\partial V}} = r_{\mathcal{S}}$$

$$\frac{\partial C_{A}}{\partial T} = -(2+C_{A})$$

$$\frac{\partial CA}{\partial r} = \partial T \longrightarrow \ln \frac{-2 - CA}{-2 - CA} = T$$

$$\frac{1}{-2-4} = \hat{1}$$

$$\frac{\sqrt{9}}{40.4} = \frac{1.83}{40.4} = 0.51$$

Reactions In series

for series (consecutive reactions), the most-important variable is time (7 for flow reactor 4 rent fime for batch reactor)

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C$$

Ex: Batch Series reaction:

$$A \rightarrow B \rightarrow C$$

$$A \rightarrow B \qquad K_1$$

$$B \rightarrow C \qquad K_2$$

1) Mole Balances

$$\frac{\partial NR}{\partial t} = rRV \qquad V = V_0 \qquad \frac{\partial CR}{\partial t} = rR$$

$$\frac{\partial NR}{\partial t} = rRV \qquad \frac{\partial CR}{\partial t} = rR$$

$$\frac{\partial N_0}{\partial t} = rCV \qquad \frac{\partial N_0}{\partial t} = rC$$

2) Rate

Relative Rates
$$\frac{r_{A_1}}{-1} = \frac{r_{B_1}}{1}$$

$$\frac{r_{B_2}}{-1} = \frac{r_{C_2}}{1}$$

Integrating factor [Appendix A.1]

Ex: CSTR series Example

$$A \rightarrow B \rightarrow C$$

$$C_{AO} V_O - C_A V_O + v_A V = 0$$

$$C_{AO} - C_A + (AT = 0)$$

2) Rates

Relative Rates

$$\frac{\Gamma_{R1}}{\Gamma_{R1}} = \frac{r_{R1}}{\Gamma_{R1}}$$

$$\frac{r_{B2}}{-1} = \frac{r_{C2}}{1}$$

Net Rates

3) Combine

$$C_{A} = \frac{C_{A} \circ - C_{A}}{k \cdot C_{A} T} \rightarrow C_{A} = \frac{C_{A} \circ}{1 + k_{1} T}$$

1+ K2T + K1T + K1K2T2

-maximum T gives max CB

$$\frac{\partial L_B}{\partial \overline{t}} = 0 = \frac{k_1 C_{AO} \left(1 + k_2 \overline{t} + k_1 \overline{t} + k_1 k_1 \overline{t}^2 \right) - K_1 C_{AO} \overline{t} \left(k_2 + K_1 + 2k_1 k_2 \overline{t} \right)}{\left[\left(1 + k_1 \overline{t} \right) \left(1 + k_2 \overline{t} \right) \right]^2}$$

k, CAO + K, K2CAOT + K, 2CAOT + K, 2K2CAOT - K, K2CAOT + K, 2CAOT + ZK, 2K2CAOT = D

Complex Reactions

$$A + 2B \rightarrow C$$

Algorithim:

2A + 36 -> D

- 1) Number Every Reaction
- 2) Mole Balance on every species
- 3) Rate Law
 - → Net Rates of Reaction for every species

- Rate laws for every reaction

-> Relative rates of reaction for every reaction

$$\frac{r_{1}p}{-a} = \frac{r_{1}B}{-b} = \frac{r_{1}C}{c} = \frac{r_{1}p}{b}$$

Reactor Mole Balance Summary

Reactor Type Gas Phase

Liquid Phase

Batch

$$\frac{dN_A}{dt} = r_A V \qquad \frac{dC_A}{dt} = r_A$$

$$\frac{dC_A}{dt} = r_A$$

$$\frac{dN_A}{dt} = r_A V$$

Semibatch
$$\frac{dN_A}{dt} = r_A V$$
 $\frac{dC_A}{dt} = r_A - \frac{v_0 C_A}{V}$

$$\frac{dN_B}{dt} = r_B V + F_{B0}$$

$$\frac{dN_B}{dt} = r_B V + F_{B0} \qquad \frac{dC_B}{dt} = r_B + \frac{\upsilon_0 \left[C_{B0} - C_B \right]}{V}$$

Reactor Mole Balance Summary

Reactor Type

Gas Phase Liquid Phase

CSTR

$$V = \frac{F_{A0} - F_{A}}{-r_{A}}$$

$$V = \frac{F_{A0} - F_A}{-r_A}$$
 $V = v_0 \frac{(C_{A0} - C_A)}{-r_A}$

PFR

$$\frac{dF_A}{dV} = r_A$$

$$\frac{dF_A}{dV} = r_A \qquad \qquad \upsilon_0 \frac{dC_A}{dV} = r_A$$

PBR

$$\frac{dF_A}{dW} = r_A'$$

$$\frac{dF_A}{dW} = r_A' \qquad \qquad v_0 \frac{dC_A}{dW} = r_A'$$

Note: The reaction rates in the above mole balances are net rates

4) Stoichiometry

Concentration of Chas:
$$CA = C_{T_0} = \frac{F_A}{F_T} = \frac{P}{P_0} = \frac{T_0}{T}$$
 $F_T = F_A + F_B + F_C + F_D$

Conventration of liquids $C_A = \frac{F_A}{V_0}$ $C_A = \frac{N_A}{V_0}$

$$C_A = \frac{V_A}{V_A}$$

Complex Reactions

Example A: Liquid Phase PFR

$$(1) \quad A + 2B \rightarrow C$$

$$r_{1A} = -k_{1A}C_{A}C_{B}^{2}$$

$$(2) \ 2A + 3C \rightarrow D$$

$$r_{2C} = -k_{2C}C_A^2C_C^3$$

NOTE: The specific reaction rate k_{1A} is defined with respect to species A, and the specific reaction rate k_{2C} is defined with respect to species C.

$$\frac{dF_A}{dV} = r_A$$

$$\frac{\partial F_D}{\partial V} = I_D$$

2) Rates

$$\frac{\Gamma_{1}R}{-1} = \frac{\Gamma_{1}B}{-2} = \frac{\Gamma_{1}C}{1}$$

$$\frac{r_{2A}}{-2} = \frac{r_{2C}}{-3} = \frac{r_{2D}}{1}$$

$$C_B = \frac{F_B}{V_0}$$
 $C_p = \frac{F_D}{V_0}$

Cc = Fc

-> Define parameters for Softwares.

Complex Reactions in Semi batch

Same reactions, rate laws, and rate constants as Example A:

(1)
$$A + 2B \rightarrow C$$
 $-r_{1A} = k_{1A}C_AC_B^2$

NOTE: The specific reaction rate k_{1A} is defined with respect to species A.

(2)
$$3C + 2A \rightarrow D$$
 $-r_{2C} = k_{2C}C_C^3C_A^2$

NOTE: The specific reaction rate \mathbf{k}_{2C} is defined with respect to species C.

The complex liquid phase reactions take place in a semibatch reactor where A is fed to B with F_{A0} = 3 mol/min. The volumetric flow rate is 10 dm³/min and the initial reactor volume is 1,000 dm³.

The maximum volume is 2,000 dm³ and C_{A0} =0.3 mol/dm³ and C_{B0} =0.2 mol/dm³. Plot C_A , C_B , C_C , C_D and $S_{S/D}$ as a function of time.

1) Mole Balances
$$\frac{\partial N_{A}}{\partial t} = \Gamma_{A}V + F_{AO}$$

Fig. 1

 $\frac{\partial N_{B}}{\partial t} = \Gamma_{B}V$
 $\frac{\partial N_{B}}{\partial t} = \Gamma_{B}V$

$$\frac{\partial N_{c}}{\partial t} = r_{c} V$$

$$\frac{\partial N_{p}}{\partial t} = r_{D} V$$

$$N_{Q} = 0$$

2) Rate

$$\frac{\Gamma_{1}R}{-1} = \frac{\Gamma_{1}B}{-2} = \frac{\Gamma_{1}C}{1}$$

$$\frac{r_{2A}}{-2} = \frac{r_{2C}}{-3} = \frac{r_{2D}}{1}$$

$$r_{2A} = \frac{1}{3} r_{2C}$$

$$r_{2D} = \frac{1}{3} r_{2C}$$

⇒ Same as previous Example

Selectivity = NC

Ch. 11 bleady State Non-isothermal Reactor Design

Energy Balance, Rationale & overview

1. Mole Balance [PFR]

$$\frac{dx}{dy} = -r_{A}$$

$$F_{A0}$$

$$\Gamma_A = -K_1 \exp \left[\frac{E}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \right] C_A$$

$$\frac{\partial x}{\partial Y} = \frac{\kappa_1 \exp\left(\frac{E}{R}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)\right)}{F_{Ao}} C_{AO}(1-x)$$

to solve this equation X has to be a function of either VorT → Energy Balance

1. Adiabatic CSTR, PFR, Batch or PBR

Lapacity

$$T = T_0 + (-DH_{rxn}) X$$

- DHIXN hear of a reaction

2. CSTR with heat exchange

GR heat exchange ambient temp
Aven. Q=UA(Ta-T) & large coolant flow rate

overall heal- &

transper welficient

$$X_{EB} = \left(\frac{UR}{Fno}(T-Ta)\right) + 20i (pi (T-To))$$

$$-\Delta H_{IXN}$$

3 PFR/ PBR with heat exchange

L> 3.A PFR in terms of conversion

$$\frac{dT}{dV} = \frac{r_{A} DH_{fXM}(T) - Uq(T - \overline{1}q)}{F_{AO}(\Sigma\Theta_{i}CP_{i} + DCP_{i}X)} = \frac{Q_{g} - Q_{R}}{F_{AO}(\Sigma\Theta_{i}CP_{i} + DCP_{i}X)}$$

63.B PBR in terms of Conversion

$$\frac{\partial T}{\partial W} = \frac{r_h' \ DHrxn (T) - \frac{U_a}{g} (T - 7a)}{F_{AO} (ZO; CP; + D(p X))}$$

6 3.C PFR in terms of Molar Flow rates

$$\frac{dT}{dV} = \frac{r_A \Delta H_{rxn} (T) - V_A (T - T_A)}{2 F_i C_{Pi}}$$

6.3.D PBR in terms of Molar Flow rates

$$\frac{\partial T}{\partial w} = \frac{r_{\text{A}}' \ DH_{\text{fxn}} \ (T) - \frac{U_{\text{A}}}{g} \ (T - \hat{l}_{\text{A}})}{\xi F_{i} \ CP_{i}}$$

4. Batch Reactor

5 Semi batch or unsteady CSTR

$$\frac{dT}{dt} = \frac{\partial - W_S - \sum_{i=0}^{\infty} \left(C_{P_i} \left(T - T_{io} \right) + \left(-DH_{rxm} \left(T \right) \right) \left(-r_{AV} \right) \right)}{\sum_{i=0}^{\infty} N_i C_{P_i}}$$

6. Multiple Reactions in a PFR

Summation (reactions)

$$\frac{dT}{dV} = \sum_{i,j} NH_{fxn} - Va(T - Ta)$$

$$\sum_{i,j} Summation (species)$$

Energy Balance

- Reactor with no spatial Variations

Convection

- → Heat added (+)
- -> Heat removed (-)
- -> work done by sys (+)
- → work done on the

for one species:
$$\frac{dE}{dt} = \dot{Q} - \dot{w} + F_{in}E_{in} - E_{out}F_{out}$$

for multiple species
$$\frac{\partial E}{\partial t} = \dot{Q} - \dot{W} + \dot{Z} F E \Big|_{in} - \dot{\dot{Z}} F E \Big|_{out}$$

- Replace U by U; = H; PV;
- La Express H in terms of heat capacities
- La Express Fi in terms of conversion or rates of reaction
- 6 Define Officen
- L> Define △Cp

Intro to Heat Effects

Assumptions

> produced by stirrer in CSTR or turbing
W = Flow work + Shatt work
in PFR

work necessary to get a

the mass into & out of the system flow work = - \(\frac{7}{5} \), \(\tau_{10} + \frac{7}{5} \), \(\tau_{10} + \frac{7}{5} \),

V = M3/m0)

Pressure I b specific molar volume

-> Substitute in Energy Balance Equation

$$\frac{\partial E}{\partial t} = \frac{2}{5}F_0 V_0 - \frac{2}{5}FV + \dot{Q} - \left[-\frac{5}{5}F_{10}P_0 \tilde{V}_{10} + \frac{5}{5}F_i P \tilde{V}_i + \dot{W}_S\right]$$

 $\frac{df}{dt} = \sum_{i=1}^{n} \left[\frac{U_0 + PV_0}{V_0} - \sum_{i=1}^{n} \left[\frac{U_0 + PV_0}{V_0} \right] - \sum_{i=1}^{n} \left[\frac{U_0 + PV_0}{V_0} \right] + \frac{U_0}{V_0} +$

dE = EFO HO - EFH + Q - WS Greneral Energy Balance

Steady State: 0 = ZFoHo - ZFH + Q-WS

Intro to Heat Effects

ZFio Hio = FAO ZO; Hio FAO

AHrxn- Heat of Reaction

ZFiH, = FAO Z (Oi + ViX) H; = FAO Z OiHi + FAOX Z ViHi

Stoichiometric Stoich

> phase Change

→ For no phase Changes

Hi (T) = H, (TR) + J (Pi dT To Enthalpy of formation at

* heat of formation of all elements (u. H_2 , N_2 ,-) at $T=25^{\circ}$ C $H_1^{\circ}=0$

> Constant Heat Capacities

$$H_{io} - H_{i} = C_{P_{i}} (T - T_{o})$$

$$Z_{V_i}\hat{C}_{\rho} = D\hat{C}_{\rho} = \frac{d}{a}\hat{C}_{\rho} + \frac{c}{a}\hat{C}_{\rho} - \frac{b}{a}\hat{C}_{\rho} - \hat{C}_{\rho}$$

- Unless the reaction is carried out adiabatically, the equation is still difficult to evaluate, because in Non-adiabatic Reactors the heat added to or removed from the system varies along the length of the Reactor

Adiabatic Energy Balance

$$T = T_0 - \frac{\chi \left[\Delta H_R^0 \left(T_R \right) + \Delta C_P \left(T_- T_R \right) \right]}{\xi \sigma_i \tilde{C}_{P_i} + \chi \Delta \hat{C}_P} = T_0 - \frac{\chi \left[\Delta H_R \left(T_- \right) \right]}{\xi \sigma_i \tilde{C}_{P_i} + \Delta \hat{C}_P \chi}$$

Example: Adiabatic PFR

$$A \longleftrightarrow B$$

1) Mole Balance
$$\frac{dX}{dV} = \frac{-r_A}{F_{A0}}$$

2) Rate (aw
$$- \Gamma_{A} = K \left[C_{A} - \frac{C_{B}}{K_{e}} \right]$$

$$k = K_{1} \exp \left[\frac{E}{R} \left(\frac{1}{T_{1}} - \frac{1}{T} \right) \right]$$

$$K_{e} = K_{e_{1}} \exp \left[\frac{\Delta Hrxn}{e} \left(\frac{1}{T_{1}} - \frac{1}{T} \right) \right]$$

4) Energy Balance
$$T = T_0 + \frac{-\Delta H_x^0 X}{20i Cp_i}$$

ightarrow Calculate maximum conversion [adiabatic equilibrium conversion] (Temp that gives max conv)

$$O = C_A - C_B$$
 $C_A = C_B$ K_C

$$T = T_0 + - \Delta H_X^{\circ} X$$

$$\underline{\Sigma \theta_i (\rho_i)}$$

$$X = (T - \overline{10}) \leq O'; CP'; \longrightarrow X \text{ of every } \overline{1}$$

$$-DH^{\circ}X$$

3) solve for rate Law

ls FAD/-ra use levenspiel plot

Ex. Adiabatic CSTR

$$F_{A0} = 5 \frac{mol}{min}$$

$$D_{Rxn} = -20000 \frac{cal}{mol A} \text{ (exothermic)}$$

$$C_{PA} = 164$$

$$C_{P$$

$$C_{PA} = 164$$
 $C_{PI} = 16$
 $K @ 298 = 0.1$

E= 10,000

- a) Assuming the reaction is irreversible for CSTR, A \rightarrow B, \Rightarrow A+ ι I \rightarrow B $(K_c = \infty)$ what reactor volume is necessary to achieve 80% conversion?
- b) If the exiting temperature to the reactor is 360K, what is the corresponding reactor volume?
- c) Make a Levenspiel Plot and then determine the PFR -> AUC reactor volume for 60% conversion and 95% conversion. Compare with the CSTR volumes at these conversions.

$$k = k_1 \exp \left[\frac{E}{R} \left(\frac{1}{T_1} - \frac{1}{T} \right) \right]$$

Adiabatic Cp=0
$$T = T_0 + - DH_{rxn} \times \frac{\chi}{29i Cp_1}$$

$$T = 300 + - (-20000) \times \frac{\eta}{40000} \times \frac{\chi}{1(164) + \frac{2}{1}(18)}$$

$$T = 300 + 100 X$$

$$k = k_1 \exp \left(\frac{E}{R}\left(\frac{1}{T_1} - \frac{1}{T}\right)\right)$$

$$0.1 \exp \left(\frac{10_1000}{1.989}\left(\frac{1}{298} - \frac{1}{380}\right)\right) = 3.81$$

$$\frac{V = \frac{F_{AO} X}{-F_{A}} = \frac{F_{AO} X}{K C_{AO} (1-X)} = \frac{5(0.8)}{3.51(2)(1-0.8)} - 2.62 \text{ dm}^{3}$$

B)
$$k = 0.1 \exp \left[\frac{10,000}{1.989} \left(\frac{1}{298} - \frac{1}{360} \right) \right] = 1.83$$

$$T = 300 + 100 \times$$

 $360 = 300 + 100 \times$
 $\chi = 0.6$

$$V = \frac{F_{AO} \chi}{-r_{A}} = \frac{5(0.6)}{1.83(2)(1-0.6)} = 2.05 \ dm^{3}$$

$$() \qquad \chi \longrightarrow \uparrow \longrightarrow k \longrightarrow -r_{A} \longrightarrow \frac{F_{Ao}}{-r_{A}}$$

for
$$X=0$$
 $T=300+100 X$
 $300+100 (0)=300$

$$k = 0.1 \text{ exp} \left[\frac{10,000}{1.989} \left(\frac{1}{298} - \frac{1}{300} \right) \right] = 0.111$$

$$\frac{F_{A0}}{-f_{A}} = \frac{5}{0.2238} = 22.3$$

d) Now assume the reaction is reversible, make a plot of the equilibrium conversion as a function of temperature between 290K and 400K.

2) Rate law
$$-r_A = K \left[C_A - \frac{C_B}{K_C} \right]$$

$$K = K_1 \exp \left[\frac{E}{R} \left(\frac{1}{T_1} - \frac{1}{T} \right) \right]$$

$$K_C = K_C, \exp \left[\frac{D1 t_{rxn}}{R} \left(\frac{1}{T_1} - \frac{1}{T} \right) \right]$$

Adiabatic Conversion

The highest conversion that can be achived in reversible reactions

Endothermic equilibrium conversion of with 77 Exothermic equilibrium conversion & with 17

In Exothermic Reactions, to determine the maximum conversion that can be achieved, find the intersection

of the equilibrium conversion as a function of T

To to To1 > the adiabatic equilibrium

Conversion decreases

Equilibrium conversion Eqn (E11-3.12)

Adiabatic equilibrium

Ton > Ton

Exercitable Adiabatic temperature

Ton Ton

Exercitable Adiabatic temperature

Reactor Staging

higher conversion can be achieved for adiabatic operations by connecting reactors in series with interstaged cooling

⇒ Exothermic Reactions 1T J Xe

→ Endothermic Reactions TT TXe

Optimum feed Temperature

> Using very high feed temp, the specific reaction rate will be high 3 reaction will proceed rapidly but equilibrium conversion will be close to zero ⇒ very little product will be formed

-> Using very low feed temp, very little product will be formed because the reaction rate is so low.

Figure 11-10 Adiabatic conversion profiles for different feed temperatures.

Chapter 12: Steady state - Noniso thermal Reactor Design [Reactors with heat exchange]

Steady State Tubular Reactor with heat exchange
[PFR]

Tubular reactor with heat either added or Removed No Radial gradient in the reactor

a: heat exchange area per unit volume of Reactor

$$\alpha = \frac{\pi DL}{\sqrt{2}} = \frac{4}{D}$$

 \rightarrow Dividing by ΔV ξ taking limit $\Delta V \rightarrow \infty$

$$\frac{-\partial \xi F_{i}H_{i}}{\partial V} + U\alpha (T\alpha - T) = 0$$

$$\frac{-\partial \xi F_{i}H_{i}}{\partial V} = -\left[\xi F_{i}\frac{\partial H_{i}}{\partial V} + \xi H_{i}\frac{\partial F_{i}}{\partial V}\right]$$

→ Mole 1391911ce on species i

$$\frac{\partial F_i}{\partial V} = \Gamma_j = \gamma_i (-\gamma_A)$$

$$\frac{\partial Hi}{\partial V} = C_{P_i} \frac{\partial T}{\partial V}$$

$$-\frac{\partial \leq F_{i}H_{i}}{\partial v} = -\left[\leq F_{i} C_{p_{i}} \frac{\partial T}{\partial V} + \leq H_{i} V_{i} (-\Gamma_{A}) \right]$$

ZHIVI = DHrm

-> Back into Energy Balance

$$\frac{\partial F_{i}(\rho_{i})}{\partial V} = \frac{\partial F_{i}(\rho_{i})}{\partial V} - \frac{\partial F_{i}(\rho_{i})}{\partial V} + \frac{\partial F_{i}(\rho_{i})}{\partial V} - \frac{\partial F_{i}(\rho_{i})}{\partial V} + \frac{\partial F_{i}(\rho_{i})}{\partial V} - \frac{\partial F_{i}(\rho_{i})}{\partial V} + \frac{\partial F_{i}(\rho_{i})}{$$

* for exothermic reactions (Q gen) will be a positive number $Q_g > Q_r \implies Temperature$ will increase down the reactor $Q_r > Q_g \implies Temperature$ will decrease down the reactor

* For endothermic reactions (Qgen & Qr) will be negative numbers \Rightarrow Tq >T - Qg > - Qr \Rightarrow Temp will decrease - Qr > - Qq \Rightarrow Temp will increase

User friendly Energy Balance for [PBR]

$$\int_{0}^{W} \frac{U\alpha}{f_{B}} \left(T_{\alpha} - T\right) dW + \sum_{i} F_{i} H_{i} = 0$$

- Differentiating with respect to W

$$\frac{Ua}{J_B} (\Gamma_{q}-7) + 0 - \frac{1}{2} \frac{\partial F_i}{\partial W} H_1 - \frac{1}{2} \frac{\partial H_i}{\partial W} F_1 = 0$$

- Mole Balance on species's

$$\frac{\partial F_i}{\partial W} = \Gamma_i = V_i \left(-\Gamma_A'\right)$$

→ Enthalpy for species i

$$H_i = H_i^{\circ}(T_R) + \int_{T_R}^{\bar{I}} C_{P_i} dT$$

- combine

$$\frac{U_{a}}{J_{B}}\left(T_{q}-T\right)+r_{A}^{i}\underbrace{\sum v_{i}H_{i}}_{i}-\underbrace{\sum F_{i}C_{P_{i}}}_{JW}\underbrace{dT}_{dW}=0$$

$$F_{i}=F_{AO}\left(O_{i}+V_{i}X\right)$$

→ Back into Energy Balance [Terms of conv]

$$\frac{dT}{dW} = \frac{\frac{Ua}{JB}(Ta-T) + ra'DH_{IXN}}{Fao\left[\frac{2}{5}O_{I}Cp_{I} + DCpX\right]} = f(X,T)$$

-> Back into Energy Balance [Terms of Molar flow Rate]

$$\frac{\partial T}{\partial W} = \frac{\frac{U\alpha}{f_B} (T\alpha - T) + r_A' \Delta H_{CKN}}{F_{i} C_{pi}}$$

$$\frac{\partial X}{\partial W} = \frac{-r_{A'}}{F_{AO}} g(X, T)$$

User Friendly Equations Cases:

- 1. Constant Ta
- 2. Variable Ta [Co-Wirent]

$$\frac{\partial Tq}{\partial V} = \frac{V\alpha(T - T\alpha)}{\dot{m} (r_{cool})} \qquad V = 0 \qquad \therefore \quad T\alpha = T\alpha o$$

3. Variable Ta [counter - current]

Variable Ta [Co-current]

* The heat transfer fluid will be a cookent for exothermic reactions & heating medulin for endothermic

coolant between $R_1 \stackrel{\xi}{\sim} R_Z$ [annulus] Fao. To $\frac{1}{T_{a0}}$

Reactant & coolant flow in the same direction

2. Divide by DV & taking Im V -> &

3. Coolant Enthalpy

$$\frac{dHc}{dV} = C_{PC} \frac{dT_{q}}{dV}$$

4. Combine

The variation of wolant temperature down the length of Reautor

Figure 12-3 Heat-transfer fluid temperature profiles for co-current heat exchanger. (a) Coolant. (b) Heating medium.

Variable Ta [counter-current]

Reacting mixture & heat transfer fluid flow in opposite direction

At reactor enterance V=0 Reactants To, coolant Taz

in out

At the end of the recutor Reactants T, coolant Tao

$$\dot{m}_{C} \frac{\partial H_{C}}{\partial V} + U\alpha (T - T\alpha) = 0$$

- At the enterance
$$V=0$$
, $X=0$, $Ta=Taz$

- At the exit
$$V = Vf$$
, $T = Tao$

Heat Exchanger

Example - Constant T_a

Elementary liquid phase reaction carried out in a PFR

The feed consists of both inerts I and species A with the ratio of inerts to the species A being 2 to 1.

1. Mole Balance
$$\frac{dx}{dy} = \frac{-r_A}{F_{AB}}$$

$$k = k$$
, exp $\left[\frac{E}{R}\left(\frac{1}{r}, -\frac{1}{r}\right)\right]$

$$k_c = k_{c_1} exp \left[\frac{\Delta H_{IXN}}{R} \left(\frac{1}{T_1} - \frac{1}{T} \right) \right]$$

3. Stoichiometry
$$C_A = C_{AO} (I - X)$$

 $C_B = C_{AO} X$

4. Heat effects
$$\frac{dT}{dV} = \frac{(-DHrxn)(-rA) - Va(T-Ta)}{bV}$$
 Kp=0

Ex. Adiabatic PFR Algorithim

2. Energy Balance

PBR & PFR Design with Heat Effects

Constant T_a reversible exothermic reaction in a PFR with heat exchange

Constant T_a endothermic reaction in a PFR with heat exchange

Study Example
12-1 & 12-2

Variable T_a exothermic countercurrent exchange

Variable T_a exothermic co-current exchange

CSTR with theat Effects [Multiple Steady States in (STR)

Plot of XMB $\frac{9}{9}$ XEB VS T

Intersections of $\frac{1}{9}$ $\frac{1}{9}$ satisfy both the Mole 13alance $\frac{9}{9}$ Energy Balance $\frac{1}{9}$ Steady States

Acadrian must operate near one of these Steady States

-> Steady state Energy Balance on CSTR

Considering a jacketed CSTR, with constant heat capacity, negligable shaft work, DCp=0, first order kinetics, Tio=To, constant Ta in jacker

→ Energy Balance: (- DHrxn) FAOX - FAO ZDiCA; (T-TO) - UA(Ta-T) = 0

Heat Removed RCT)

Heat Generated G(T)

$$G(T) - R(T) = 0 \Rightarrow \text{Steady state}$$

→ Substitute:

$$\frac{C\rho_{o}(T-T_{io})-UA(T_{q}-T)}{F_{Ao}}=-DH_{R_{x}}^{*}(T_{R})\left[\frac{-r_{A}V}{F_{Ao}}\right]$$

Pron-adiabatic parameter

$$K = \frac{UA}{C\rho_0 F_{AO}} \rightarrow T_c = \frac{T_0 F_{AO} C\rho_0 + UA Ta}{UA + C\rho_0 F_{AO}} \qquad \therefore T_c = \frac{K T_0 + T_0}{1 + K}$$

Iteal removed RIT)

Heat Gren GT(T)

Hear Removal Term RCT)

R(T) line has slope of $C_{P0}(1+\kappa)$

When To increases, slope stays same & line shifts to right
To Cintercept J increases

When κ increases from lowering F_{AO} or increasing heat exchange, slope and x-intercept moves

 $T_a < T_0$: x-intercept shifts left as $\kappa \uparrow$ $T_a > T_0$: x-intercept shifts right as $\kappa \uparrow$ $\kappa = 0$, then $T_c = T_0$ $\kappa = \infty$, then $T_c = T_a$

* K & Tc are used to simplify equations for non - adiabatic CSTR

Heyt Generation Term GICTS

→ to obtain a plot of heat gen as a function of temperature >> solve for x as a function of T

$$V = \frac{F_{AO} X}{-\Gamma_A} = \frac{C_{AO} 7_O X}{K C_{AO} C_{I} - X}$$

$$V = \frac{v_O X}{K C_{I} - X}$$

$$X = \frac{ZK}{I + TK}$$

- substituting for X

$$G(T) = -\Delta H_{1}^{r} \times n T_{K}$$

$$I + T_{K}$$

$$G(T) = -\Delta H_{1}^{r} \times n T_{K} A e^{-E/RT}$$

$$I + T_{K} A e^{-E/RT}$$

Figure 12-9 Variation of G(T) curve with activation energy.

Figure 12-10 Variation of G(T) curve with space time.

- \bullet Suppose a disturbance causes the reactor T to drift to a T between $\mathrm{SS}_1 \,\&\, \mathrm{SS}_2$
- \bullet Suppose a disturbance causes the reactor T to drift to a T between SS_2 & SS_3
- Suppose a disturbance causes the reactor T to drop below SS₁
- Suppose a disturbance causes the reactor T to rise above SS₃

SS₁ and SS₃ are locally stable (return to them after temp pulse) SS₂ is an unstable- do not return to SS₂ if there is a temp pulse

Ignition & Extinction Curves

The points of Intersection of GCT) & RCT), give us the temp al-which the reactor can operate at a steady state

By increasing the Inlet temp (To), the GI(T) curve remains unchanged, but the RCT) line would move to the right

→ By plotting To Vs. To [Temp Ignition - extinction curve]

- As To Increases, Ts increases
- Ignition temp: Twhere jump from Islower to Tsupper
- Extinction temp: T where drop from Tsupper to Tslower occurs.
- Points 5 & 8 => unstable steady states. (Avoid working on their corrosponding temperatures)

when To exceeds Tignition → Transition to
the upper steady state will occur
undestrable & Dangerous

Ruraway Reactions: RCT) only intersects with upper Steady state