

Electrical

Summer 2025/2026

Perpared By:

Dr:

hedaya Abu Alhamed Yazid khattabi

Chapter 1

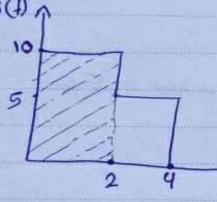
, t(s)

lect. (1), Town lit puplis

13 /Jule / 2025

* change, current. - 1-3

السّار هوسيل من الإنكارونات و- I م


e = 1.6 x 10-19 C. , Q= ne

6=dq (e) Nore Its -

di

Q = Sidb

Exis ia)

* Find Q. 60-32

Q= Si(+) dt => Area

Q = 2 x 10 = 20 coloum.

Ex28 Find i(4)

ALAGIB (18)

الخطارة

1 1

increasing a current wave form

alored in fell in fext in fext

Ex:3 Q(+) = 10 - 10 e^-2+, Find i(+) when \$=05 sec.

 $i = \frac{d9}{d4} = 0 + 20e^{-2t}$,

i(4)= 20 e⁻²⁴ i(5)= 20e^{-2x5} = 9.1 x10⁻⁴ A.

Ex (4) 8

i(t) = (362-t) A , Find Q when t=1 , t=2

 $Q = \int_{0}^{2} i(t) dt$ = $\int_{0}^{2} (3t^{2} - t) dt$

 $= \frac{31^3 - t^2}{3} = (8-2) - (1-0.5)$ $= \frac{31^3 - t^2}{3} = (8-2) - (1-0.5)$

ALADID net

الحطارة

tualtage
· Va -> voltage of point @
No -> voltage of point 6
If I have in (00) charge equal I coloum.
the work need to bring a charge of 10 to point @
بدي أجب شون و منارع الكوري موجودة با ((ع) بدي أبدل عليها منطل هه rom ه
(a) Feail 100
x V = dw , w: work
dy 4: charge.
A.SU
7c= -40 . 1p= 3V
Vab = Va - Vb = 5-3 = 20
Vac= va- vc = 54 = 90
* power and Energy s
$P(\omega)$ $E(J)$
P= dw
dt
W= SP.dt
Ex:(5) ? b, find v if q=2C.

ALADIB net

-307

V = W = -30 = -15 N

(يشو الخطبارة Ex(6):-find the power if t = 3ms, $i = 5 c \approx (60 \text{ T} t)$ v = 3i

P=I.V

 $\rho = 1.0 = 5 \cos(60\pi t) (3)(5\cos 60\pi t)$ = 75 (05²(60\pi t)

at 3ms

P=75 cos²(60π (3 x 10-3)) - Radion. It styll al II.

Ex(7); we have lamp & has P-100w, work in 2 hours we How much energy?

W=Pt

=100 x2 x 3600

= 72 × 104 J

* Circuit Elements:

-> Power source (Produce Power)

> load (consums Power).

> concentration

الخضارة

ai atilid not

2.6		
- 8		
- 8		
-		

9 Power source () Independent voltage source. (1)
3v , Direct current (continous)
Independent current source. (7)
@Dependent power source.
(بعيتمر على قيمة تيارم فينة مكل x و dep. من voltage source. (3ix من من من على على المناسبة مكل x المناسبة مكل المناسبة مكل x المناسبة مكل المناسبة المناسبة مكل المناسبة
dep. => current source. (thy Ja of My jaige ses sais de sais)
Power supply.
current x Inde -> 5220 quis voltage
Indo dep indep dep

ALADID net

الممارة

*For	amy	electrical	circuit
------	-----	------------	---------

5P=0

& Pin = & Pout

* إذا دهل التياري العرب السالب المصدر فرق الجهد سكون ال مصمه سالبه و سم produce, generate, deliner power.

\$ i = 4A

. * إذا السّار دخل في القطب الموجب طعرر في الجهد 20 of Enpo power 1105 consumed power.

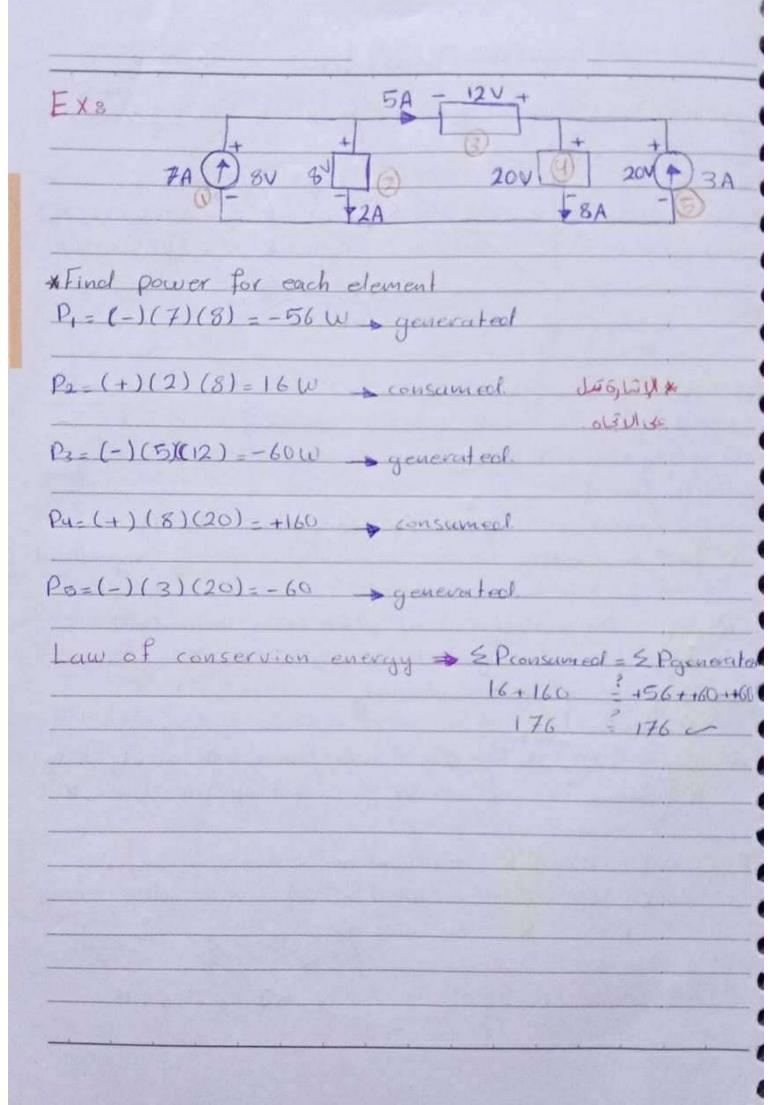
P = -(5)(-3)

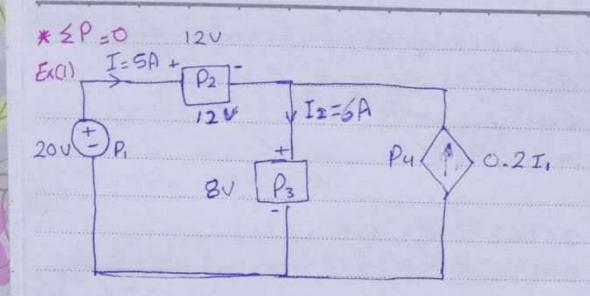
= 15W 15600 G3A

$$\Rightarrow i = \begin{cases}
4A, & 0 < t < 1 \\
4t^2A, & t > 1
\end{cases}$$

$$(a), t = 0 \Rightarrow t = 2$$

$$= \int_{0}^{1} \frac{4}{4} dt + \int_{0}^{2} 4t^{2} dt + \int_{0}^{2} 4t^{2} dt$$


$$= 4t \int_{0}^{1} + 4t^{3} \int_{0}^{2}$$
3


25 sin (60 xTx5)

60xTT

(ييثو (لحضارة

ALADIB net

• إذا د فل التيار القطب

P2=+(5)(12)=+60w(cons.)

السالب إذًا (-) د. ٩ * إذا دفل التيار القطب

.

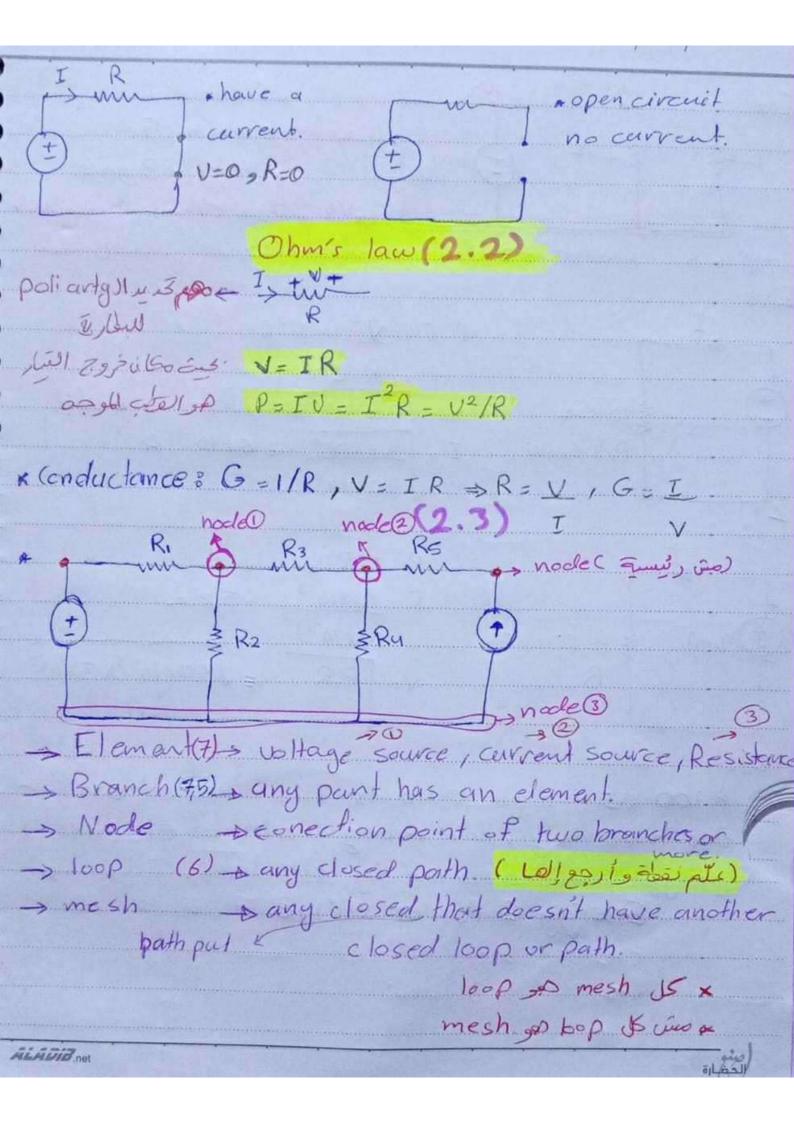
الموجب إذاً (6 م

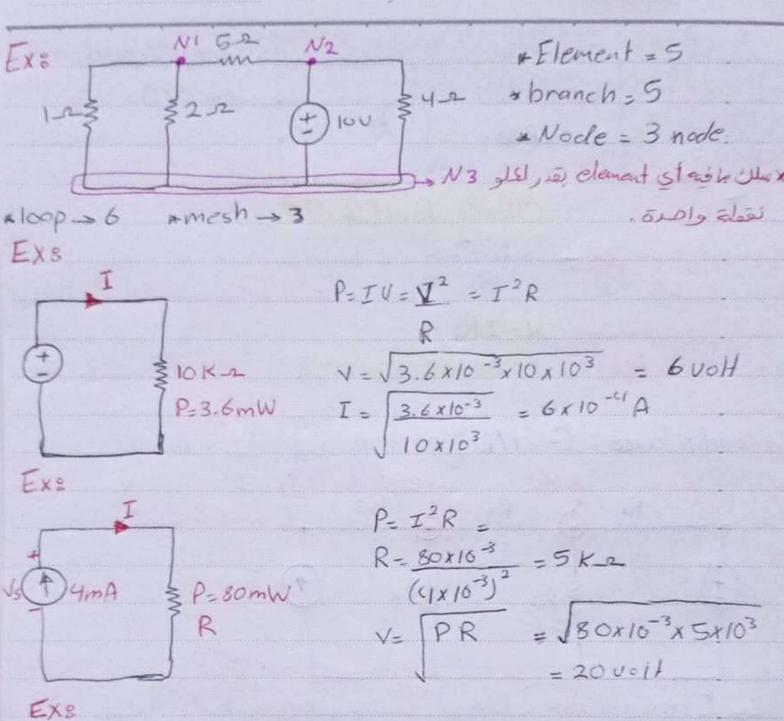
EP=0, 50 P4 = -8W

Ex(2): I=8A + I=5A $F_3 + -0.6I$ $F_4 = 3 \text{ Vol} 4$

P3 = ?

P3 = + 9w


P4 = + (5)(3) = +15


End of chapter one

ALADID net

المطارة

Chapter 2

A 100 Watthigh bulb is illuminated on for one hour only. How many joules of electrical energy have been used by the lamp.

Energy = Power x time
= 100 x60 x60

= 360 KJ

Exa How much energy does a 1200 w dishwasher use when it runs for 30 minutes (1800s)? Energy = Power x Time = 1200x1800 = 2160KJ, 2.16MJ Explaner dissipated or generated by each element. + load - V=8VPB = -UB x t = -12x0.1 = -1.2W T VB (coid) V2 UB=12VP2 = U2 x 6 = 4 x 0.1 = 0.4 W. + V2=4VP= V, xb = 8x 0.1 = 0.8W. Exe Determine the unknown uc Hage or unknown current. P=IV $V_1 = ?$ $V_2 = ?$ $V_3 = ?$ $V_4 = ?$ $V_5 = ?$ $V_6 = ?$ $V_7 = ?$ V_7 Exa Balcalate the current(e), the conductance(G) V= IR = I=U/R= 30/5 x103 =6 x10-3 volt G=1/R=1/5x103=2x10-45 = 30V 5K=3V P= IV = 30X 6 X 10-3 = 0.16W

ALADIB ...

Ex & Given the following circuit find, the value of the voltage source and the power abosorbed by the R. B= I = 0.5 × 10-3 J = 0.5 mA J = 0.5 mA $J = 0.010^{-6}$ J = 10 VolP= IU= 10 x0. 5 x 10-3 = 5 x 10 3 W P= 20 ccs 26 1 I-2A V=10 cost P= IU 7=P = 20 cost = 2 cost V jockst R= V = 10 cost = 5.2 I 2cft P= IU=2x24=48W P1= IU=2x6 = 12W P2-IU=18x2-36W EX3 E(1) End Topic(1)

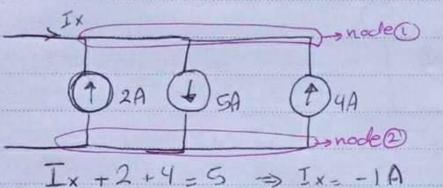
2.4, Kirchof law.

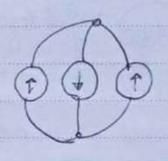
Oxirchof current law (KCL)

@Kirchof vollage law (KVL)

* KCL & for any node \$ I=0

& Iin = & I out


EX8 Find Ix.


$$I_{2}=4A$$

$$I_{1}=3A$$

Ix + I2 = I1+ I3.

Ex 8

> KVL 8 for any loop (Any closed loop) , 2V=0

200 (I) 32 3 N2 3 Apply KVL.

ع البطارية ع ويغرج من القطم السالب في المعاومة.

- DAssing the current (photosis is 2) @Assing the polanty of each voltage

$$-20+U_1+U_2=0$$
 $U_1=Ix2$

V1 = 2 x4 = 8 volt 12=3x4 = 12 vol+

$$-32 + U_1 - 8 - U_2 = 0$$
 $V_1 = 4 \times 4$
 $U_1 - U_2 = 24$ yolf $= 16 \text{ wolf}$
 $2 + 4 = 6 - 2$ $V_2 = 4 \times - 2$
 $24 = I \times 6$ $= -8 \text{ wolf}$.
 $T = 44$

$$I_1 = ?$$
, $I_2 = ?$, $I_3 = ?$
 $J_{1,2}$?

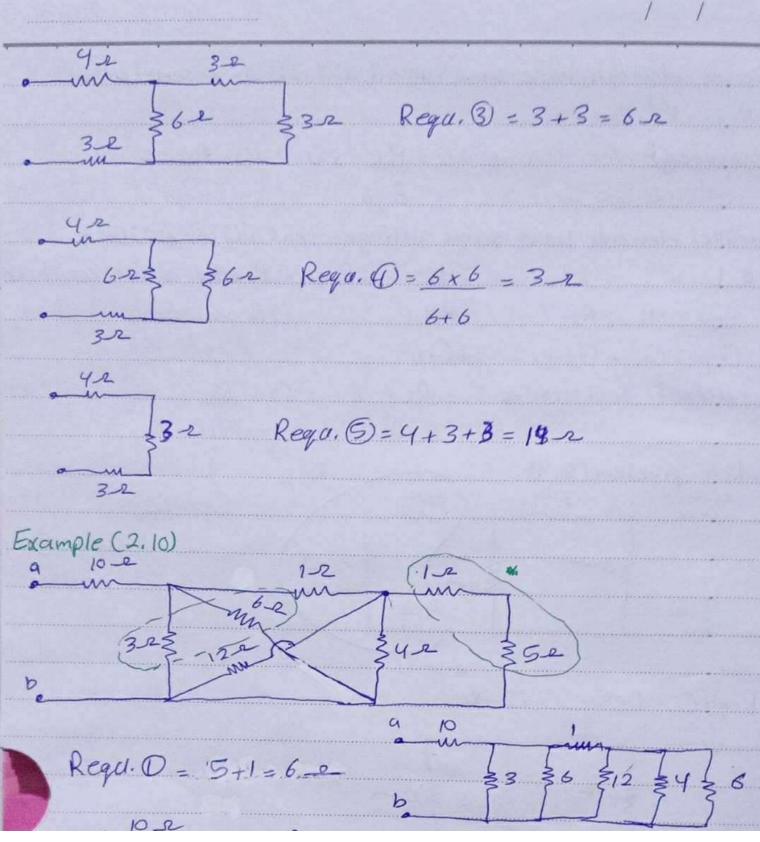
*apply KVL at 100p 0: -10 + 2 I, +8 I2 = 0 2 I, +8 I2 = 10 -- 0

scapply KVL at 100p @8

-812+413-6=0 -812+413=6 m2

I1 = I2 + I3 (3)

I, -I2 - I5 = 0

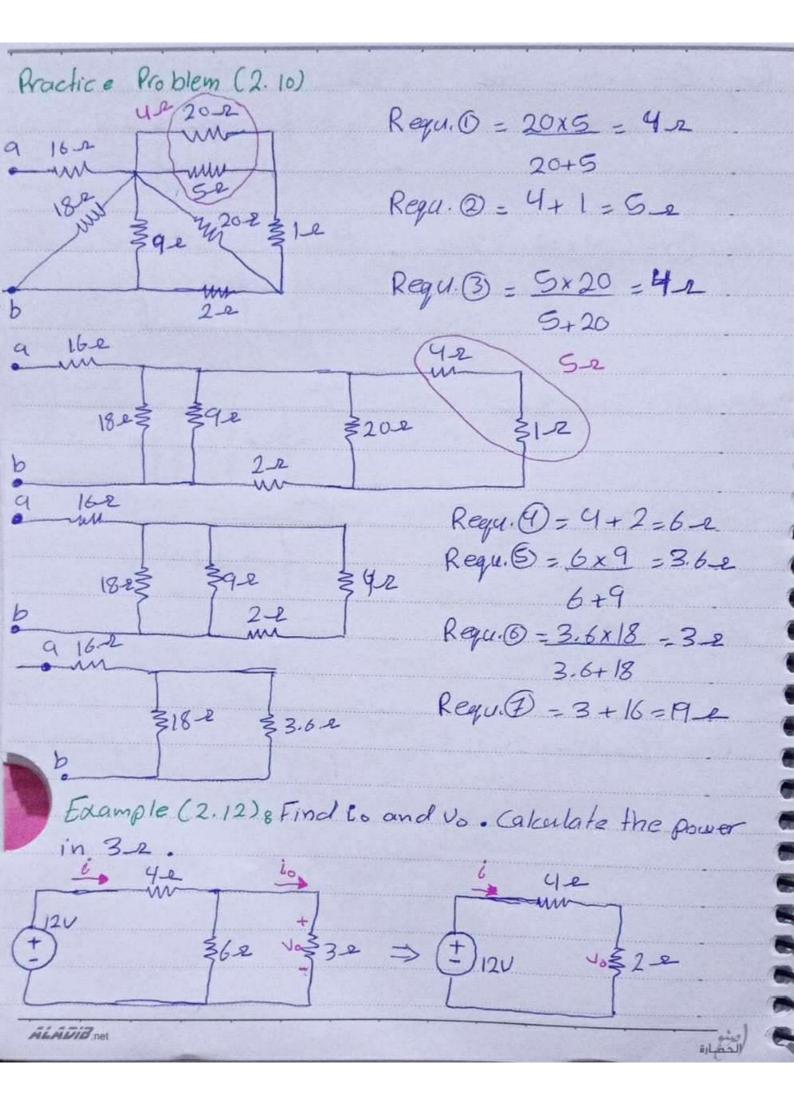

I₁₌₃A I_{2=0.5}A

2(I2+I3)+8I2=0 10I2+2I3=0-4 solving equ. \$808

 $I_3 = 2.5A$

		16 17 12	
* Series elements have ;	same current, اليار	التوالي موفها نفس	
C 11 1 1 1 1 1 1 8			
@ voltage devision =	> U = RL XU	2U2= R2 U	
الم ساد الله الله الله الله الله الله الله ال	Kezu	React	*
parallel elements have s	same voltage ,	التا: در مرور فرم) نفس الحرم	
00-1+1+	+ L o Keye	(= RIXR2 = Lung	esistau
Marie	KN	R1+R2	
Gegu = 6, + 62+	-+Gu		
(2) current devision >	I1= R2 I 9	$I_2 = R_1 I$	
The state of the s	Ri+R2	R,+R2	
Panticle problem (2.9)	CLE	Oethica e	
	1	Device's	
	42) \$5.2	أمن اليمين يسم أول بأول	J (C)
3-2 un	(3-2)	7 . 51 . 51	
	4		
Requ. 0 = 4+5+3=12-1	2		
- wing	7		
362 3	\$ n e		-
3.2 }	e } 12-e		
- in]			
Ray (2) - 12 // 12 12		•	
Ragu. @ = 12/14 = 12x4	= 3-2	The second secon	

ALADIB net



3 \$ \frac{10}{3} \frac{1}{3} \ Reque. 0 = 6x4 = 242 - 10 322 362 \$22 Requ. 3 = 2.4x12 = 22 Requ.(4) = 2+1=3-2 N 32 36 e 3 32 10-2 3-2 \$ 22 10-2 3 1.2-2 Requ. (5) = 3 x 6 = 22

Requ. 6 = 2x3 = 1.2 - 2

Reyu. D = 10 + 1. 2= 11.2-2

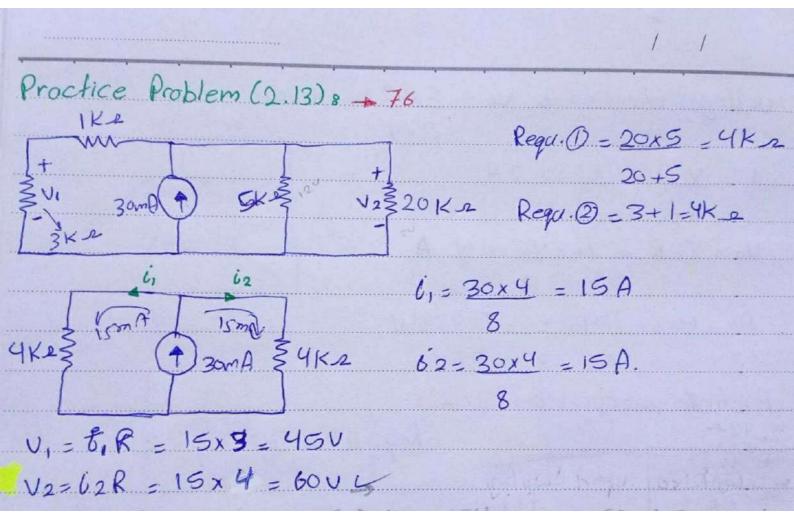
ALADIB net

voltage division
$$\Rightarrow$$
 Vo = $2 \times 12 = 4$ volt.

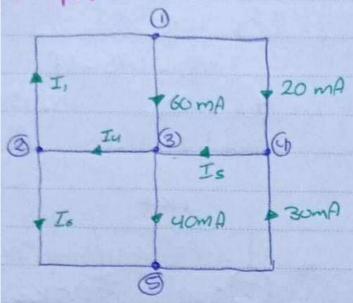
$$\dot{\delta} = V = 12 = 2A$$

3

Particle part problem (2.12):

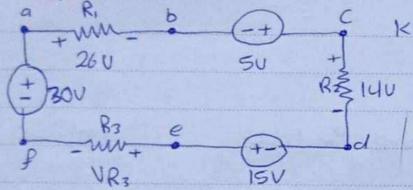

12 h + 1/2 + 1/2 1300 \$ 10-2 \(\frac{3}{2}\) 40-2

Voltage devision on seriess $V_1 = 30 \times 4 = 10 \text{ Volt } = \text{same}$ $12 \qquad \text{in } 12e$


V2=30x8 = 20 volt same

12

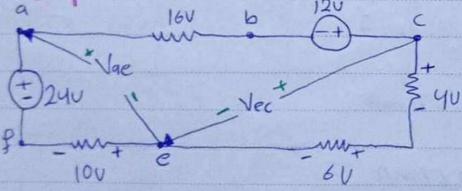
m 40 e



Example:

$$I_5 = 50 \text{ mA} = 20 + 30$$

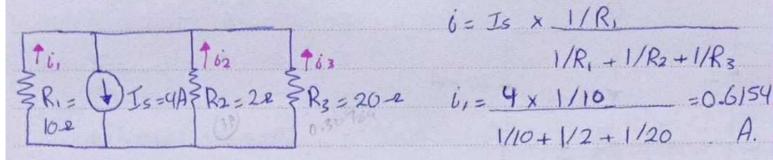
 $I_4 = 60 + 50 - 40 = 70 \text{ mA}$
 $I_1 = 20 + 60 = 80 \text{ mA}$
 $I_6 = 70 - 80 = -10 \text{ mA}$


Example 8

KUL⇒26+5+14-15+VR3 -30=0

VR3 = 10 volt.

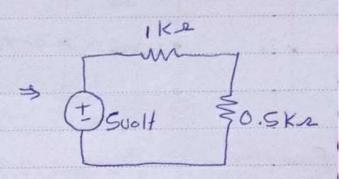
Example:


KUL -> -24 + Vae +10 =0

Vae = 14 volt

KVL = 4+6 - Vec = 6

Vec= 10 volt


Example:

$$6 = Is \times 1/R_1$$
 $1/R_1 + 1/R_2 + 1/R_3$
 $i_1 = \frac{4 \times 1/10}{1/10 + 1/2 + 1/20} = 0.6154$

1

Example: IKE Sualt.

$$l_1 = V_1 = 3.3 = 3.3 \text{ mA}$$

$$R_1 = 1 \times 10^3$$

$$l_2 = V_2 = 1.67 = 1.67 \text{ mA}.$$

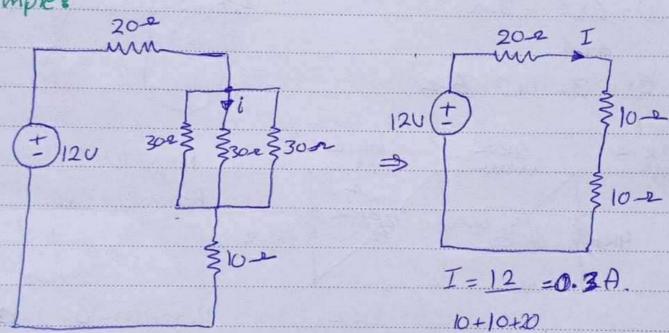
$$R_2 = 1 \times 10^3$$

$$l_3 = V_3 = 1.67 = 1.67 \text{ mA}.$$

$$R_3 = 1 \times 10^3$$

Examples 42 Treak Regu. 0 = 4+5+3=12-2 Regul = 12x4 = 32 12+4 Regu. 8) = 3+3=6-2 Regu. 40 = 6x6 = 3-26+6 Regu. 6) = 3+ 1+2= B-2 Example 8 A ZKZ 10K-R Regu. 0 = 2+1=3K2 Requ. 0 = 3x6 =2 K2 rum Regu. 3) = 16+2=12K-2 9 K2 2Ke Ragu. 9 = 12x6 = 4Ke Regu. 5 = 14+2= 8Ke 2K-2 Ragu. 6= 18 x6 = 42 K2 6+6 3 12 Zoke & Ke RQU. D=42+9=182Ke Aspens How. ALAVIB net

/


= 14.6 mx2

Regul 8 = 12 4+13-2

Regu 9 = 3+2=5K2

Examples

Example:

6 = 0.3 = 0.1A

1 1

I1=1A I2=0.5A I3=0.5A

Vb=IR=0.5x3=1.50014.

* From V to Y > page Plate 6Y as los of polablicas latter Robert Rise Rark Robert Rise Rark

RI MR2

R1

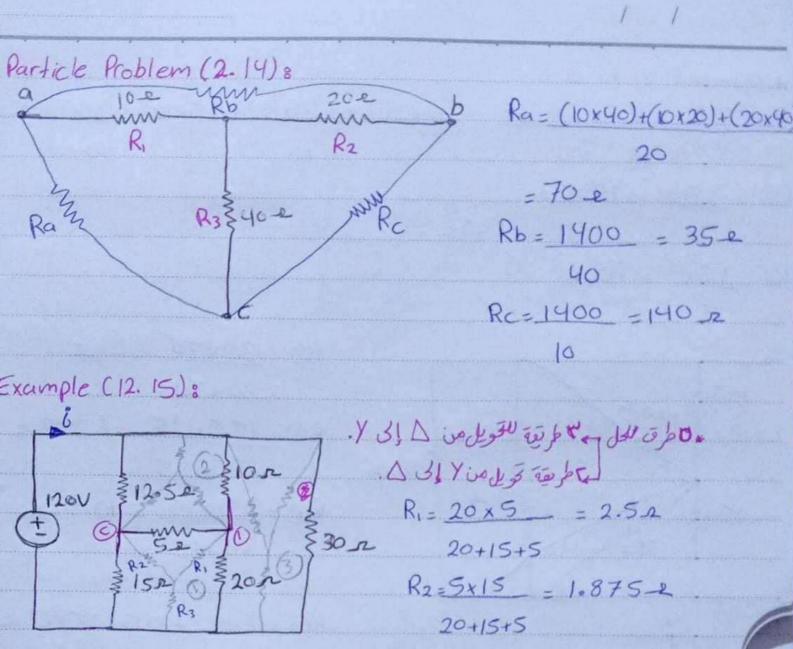

Rb= R, R2+ R2 R3+ R1 R3
R2

Rc = R, R2 + R2 R3 + R, R3
R3

* In case RI = R2 = R3 - Ry = RA , RA = 3 Ry

3

Example 3



 $R_1 = RaRc = 25 \times 10 = 5 = 6$ Ra + Rb + Rc = 25 + 10 + 15 $R_2 = Rb Rc = 15 \times 25 = 7.5 = 7.5 = 2$

Ra+Rb+Rc 25+10+15

R3 = RaRb = 15 × 10 = 3-2

Ra+Rb+Rc 25+10+115

I = V = 120 = 12.46A.

R 9.63

12.5 + 14.375 Req. 4.9 = 6.686 + 7.5 = 14.186.2 $Req. 6 = 14.186 \times 30 = 9.63.2$ 14.186 + 30

Rayu. 3 = 12.5x14.375 = 6.686 2

A convent y to D Ra=RiR2+RiR3+R2R3 = (10x20)+(20x5)+(5x10) = 350=35e Rb-350 = 17.52 RC=350 = 70= 5 RO = 30x70 = 21e 30+70 125=3 RO = 17.5x12.5 =7.2922 17.5+12.5 Ra) = 35 x 15 = 10.52 35+15 RGD = 7.292 + 10.5 = 17.792. RE)=17.792×21 = 9.6322 321-2 17.792+21 I = 120/9.632 = 12.458A مقالين بالساساد-Ex(2) 8 Y > A Exc1); R,= (6x1) + (4x12)+(12x7) R3=144 6 = 24K2 = 36 Ke R2=144 = 12K-2

I find which

Practice Aroblem (2.15) &

R= (10x50)+(50x20)+(10x 20)/50:

= 1700 - 342

₹R3 R2=1700 = 170e 10

R3 = 1700 = 85-2

20 13.2 2423 ₹850 30.43 13-2

\$142

3852

RO = 39x24 = 142 34 + 24

R2 = 30x170 = 25.5.e

301170

Ra)= 25.5+14=39.5-2

RG = 85 x 39.5 = 27.2

85+39.5

RED= 27+13=402

I = 240 = 6 A. 40

132 \$ 272 Chapter 3

Nodal analysis

*wex are interested in finding the node voltage. - Nodal analysis for CKTs with no voltage sources. " voltage sources. به عند فرض الاتجاه للسار العظم الموجه عنده جهداً كرمن العظم السالم Example (3.1) 8 apply KCL and node 08 5 + V2 - V1 + O - V1 = (4 2 1/2 - U1 - V1x2 = -5 1- ref. (-3U1 + 1 U2 = -5 X Y * KCl at node 08 -5+10+V1-V2+0-V2=0(-3V1+V2=-20 -1110) $\left(\frac{1}{V_1} - \frac{10}{10} V_2 = -5 \right) x - 12$ 4 24 (-3V, +5V2=60)

1 1

$$\begin{bmatrix} -3 & 1 & | & V_1 & | & -20 \\ -3 & 5 & | & V_2 & | & 5 \\ \end{bmatrix} = \begin{bmatrix} -20 & | & > V_1 = 13.33 \text{ uoH} \\ V_2 & | & 5 & | & V_3 = 20 \text{ uoH}. \end{bmatrix}$$

at nade O: $\left(-3 + -8 + \frac{\sqrt{2} - \sqrt{1}}{3} + \frac{\sqrt{3} - \sqrt{1}}{4} = 0\right) \times 12$ -U1 - V1 + V2 + V3 = 11 => -0.583 U, -0.333 V2 3 4 3 4 -0.25 V3 = 11 ~ (1) -7 V1 + 4 V2 + 3 V3 = 132 ~ ... 0 at nock D: 3+ V1- V2 + O- V2 + V3- V2 =0

0.333 U1 + 1.476 V2 + 0.1429 V3 = 3 - 2

U, = 5.4 volt 12 = 7.7 volt 13 = 46.3 volt.

Particle problem (3.1): $V_1 = -6001t$, $V_2 = -412001t$.

A $V_1 + 622 - 422$ A $V_2 = -412001t$.

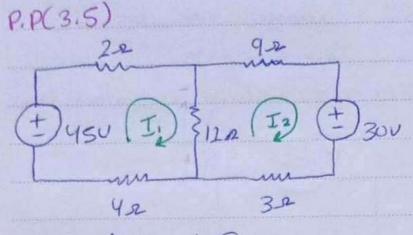
A at node $0 \times CL^2$ $3 + 0 - V_1 + V_2 - V_1 = 0$

 $\begin{pmatrix} -U_1 & -U_1 & +U_2 & = -3 \\ 2 & 6 & 6 \end{pmatrix} \times -6$

 $3U_1 + U_1 - U_2 = 18 \text{ }$ $4U_1 - U_2 = 18 \text{ }$

cel node ②*Ch8 $-12 + 0 - U^{2} + V_{1} - U^{2} = 0$ $7 \qquad 6$ $\left(\frac{V_{1}}{6} - \frac{V_{2}}{6} - \frac{U^{2}}{7} = 12\right) \times 42$

 $7U, -7U_2 - 6U_2 = 288 504$ $7U, -13V_2 = 288 - 2$


V1 = - 6 volt V2 = -42 volt-

Case 1. If a voltage source is U 22 61 V2 IX 50 connected between the reference node and a nonverence node, voltage equal the voltage some Cose 28 If the voltage source (+) lov 36e (dependent or independent) is connected between two. nonvetevence nodes, called superiode case(1) > U,= 10 volt case(2) => V2 - V3 = Suolt. => V2 = 5+V3 => V2 = 5-5,84 apply KCL node Os 10-V2 + 0-U2 + Tx=0 2 8 apply KCL node 2's 10-V3 +- U3 - IX=0 ع شان أ تفاعامن ال XI أعم الموادليت 10-U2 - U2 +10-U3 - U3 = 0 2 8 4 6 10-5-43 -5+43 +10-43 -43 =0 2 8 4 6 5 - U3 - 5 + U3 + 10 - U3 - U3 = 0 2 2 8 8 4 4 6 -19 U3 = 37 => V3 = -5.84 UOH

Example 3.3: (-) while applied with the proof of the pro

1 1 Hesh analysis. 1) Mesh analysis for CKTs with no current sources. * mesh is a loop which does not contain any other loops Example (3,5): I, I3) = 12 KVL at mesh Dos. -15+5I1+10(I1-I2)+10=0 -15I1-10I2 = 5 -. O. KVL at mesh @ s 6 Iz+41/2-10610(12-II)-0 10T1 = 10 $I_1 = 1A$ LO 15 X1 - 10 X I2 = 5 -10I2 = -10

mesh العَ العَام العِار المعروف في الما م العَم والما م المعام المعام العَم المعام المعام المعام المعام المعام

KUL at mesh
$$\mathbb{O}$$
 8
 $-45 + 2I_1 + 12(I_1 - I_2)$
 $+4I_1 = 0$
 $2I_1 + 12I_1 - 12I_2 + 4I_1 = 45$
 $18I_1 - 12I_2 = 45 - 0$

I1= 2.5A

I2=0

KVL at mesh @8 $12(I_2-I_1)+9I_2+30+3I_2=0$ $12I_2-12I_1+9I_2+3I_2=-30$ $-12I_1+29I_2=-30-2$ Ex8

 $I_1 = 3A$ $I_2 = -2.1A$ $I_3 = 1.61A$.

Io = 3 -- 1.61 = 4.6A

KUL ad mesh 0: $-16 + 9(I_1 - I_3) + 2(I_1 - I_2) = 0$ $4I_1 + 2I_1 - 2I_2 - 9I_3 = 16$ $6I_1 - 2I_2 - 9I_3 = 16$ kVL at mesh 0s $2(I_2 - I_1) + 8(I_2 - I_3) + 90 = 0$ $2I_2 + 8I_2 - 2I_1 - 8I_3 = -90$ $-2I_1 + 10I_2 - 8I_3 = -90$ KVL at mesh 0s $6I_3 + 9(I_3 - I_1) + 8(I_3 - I_2) = 0$

-4I, +8I2+6 I3+4I8+8I8-0

-4I, +8I2+18I3=0 mB

Mesh analysis with current source. 1 1 case le when a current source exists only in one meth (+) 100 (6) } 62 = 5A case 2: when a current source exists between two meshes We create a supermesh by excluding the current source any elements connected in series with it two meshes in a current source son all is $\frac{1}{200}$ $\frac{1}{22}$ $\frac{1}{200}$ one mesh is $\frac{1}{2}$ $\frac{1}{2}$ طريقين لكل ٤ o current sourced Vx ippi = Bill its bill 13L LUX UESHORDIN eight ou chini # 12 (I2) # 2-2 .Vx in col519 JA (13) 3/1/2 Super mest at 083: ail to be $-7+1(I_1-I_2)+3(I_3-I_2)+$ I, - 4 Iz + 4 I3 = 7 ... 0

the hand with contract

mesh 23

$$I(I_2-I_1)+2I_2+3(I_2-I_3)=0$$

-I, +6I2-3I3=0 -2

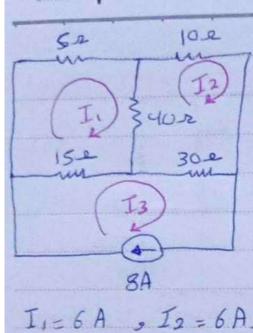
Super mesh &
$$I_1 - I_3 = 7$$
 m(3)
 $I_1 = 9A$ $I_2 = 2.5A$
P.PC3.7) & Finel I, & I_2 & I_3 .

* Supermosha -8+2(I,-I3)+8I2=0 21, +812 -213=8-0 INTO

I2-I1=4A -2 KUL at mesh 3 2 I3 + 4 (I3-I2) + 2(I3-I1)=0

Kuh at mesh C:

$$-8 + 2(I_1 - I_3) + V_{x+1}(I_1 - I_2) = 0$$


$$3I_1 - I_2 - 2I_3 + \forall x = 8$$
 $I_1 = I_2 - 2I_3 + \forall x = 8$
 $I_2 = 0$

KUL at mesh (2):

$$4(I_2-I_3)+8I_3+1(I_2-I_1)-U_{X=0}$$

Example

1 1

* super moshe

V= 1500 H.

I1= I2-2=3-2=1A

I2 = 3A

EX3

30-2 VI 10-2 VI 15

61 31 62 7 6A VX 830-2

KCL at nade @ s

 $\frac{V_1 - V_2}{10} + \frac{O - V_3}{3} + \frac{O - V_2}{20} = 0 \Rightarrow 6 V_1 - 1(V_2 = 0 - 2)$

KCL at node
$$\mathbb{O}_{8}$$
 $-\frac{U_{1}}{4} + \frac{U_{1}}{4} + \frac{U_{2} - U_{3}}{4} + 6 = \frac{20}{40} \rightarrow \frac{-3}{40} \quad \text{V}_{1} + \frac{U_{2}}{4} = \frac{-6}{20} \quad \text{X20}.$
 $30 \quad 60 \quad 10 \quad 200 \quad 200 \quad 10 \quad 200 \quad$

Exs

$$-2U_1 + U_2 - U_1 = -20$$

$$-3U_1 + V_2 = -20$$

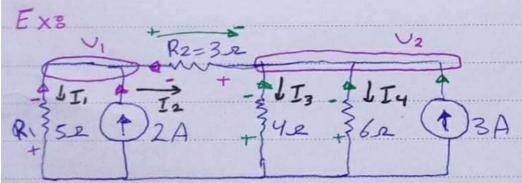
KCL al node @s

$$10-5+0-1/2+1/1-1/2=0$$
 x 24

$$-4V_2 + 6V_1 - 6V_2 = -120$$

$$63 = V_1 - 0 = 13.3 = 6.65A$$

$$2 \qquad 2$$


$$65 = V_2 - 0 = 20 - 0 = 3.33A.$$

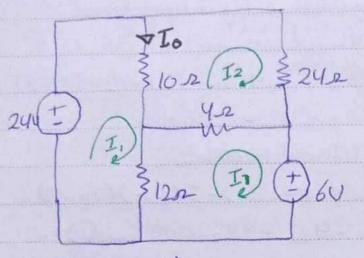
$$KCL \ af \ node \bigcirc 8$$

$$6x(3+0-v_1+v_2-v_1=0)$$

$$12A \qquad 2 \qquad 6$$

$$\left(-12 + 0 - V_2 + V_1 - V_2 = 0\right) \times 42$$

KCL at node 08


$$\left(\frac{V_1 - V_2}{3} + \frac{0 - V_2}{4} + \frac{0 - V_2}{6} + \frac{3 - 0}{4}\right) \times 12 \Rightarrow 4V_1 - 4V_2 - 3V_2 - 2V_2$$

ALADIB net

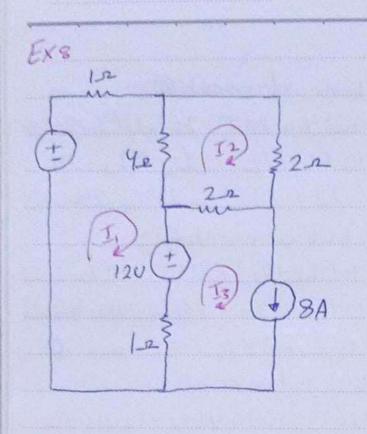
$$I_{1} = V_{1} = 0 = 8 = 0 = 1.6A$$
 $S = S$
 $I_{2} = V_{1} = V_{2} = 8 = 6.8 = 0.4A$
 $S = S$

$$I_3 = V_{2-0} = 6.8-6 = 1.7A$$

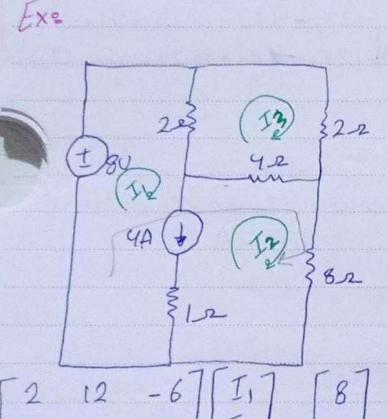
$$I_{4} = V_{2} = 0 = 8.8 = 0 = 1.13A$$

I.= 2.25A

I2=0.75A


I3 = 1.5A

KUL at mesh Os -24+10(I,-I2)+12(I,-I3)=0 10 I, +12 I, -10 I2 - 12 I 3 = 24 22 I, -10 I2 - 12 I2 = 24 - 0 KUL ad mesh @ s 10(I2-I1)+24 I2+4(I2-I3)=6 -10 I, +10 I2 + 24 I2+4 I2-4 I3=0 -10I,+38I2-4I3=0---@ KUL atmesh (3) & 12(I3-I1)+4(I3-I2)+6=6


-12 I, +4 I2 + 12 I3 +4 I3 = -6 IO=I,-I2=2.25-6.75=1.5A-12I, +8I2+16 I3=-6--3)

Exs

 $\frac{32}{1} = -5A$ $\frac{1}{1} = -$ (D) (T) 362 (T2) (A) SA II = -2A.

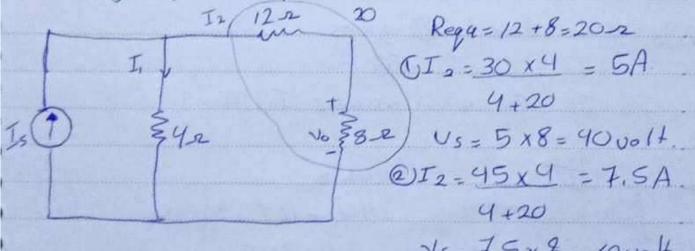
$$I_3 = 8A \Rightarrow By Inspection$$
 $kVL all mesh() = 28 = I_1 + 4(I_1 - I_2) + 12 + (I_1 - 8)$
 $= 6I_1 - 4I_2 + 4 \Rightarrow 0$
 $kUL all mesh() = 8$
 $0 = 4(I_2 - I_1) + 2I_2 + 2(I_2 - 8)$
 $= -4I_1 + 8I_2 - 16 \Rightarrow 0$

-2

KUL at mesh() 8 -8+2(I₁-I₃)+U+I(I₁-I₂)=0 KUL at mesh @ 8 $Y(I_2-I_3)+8(I_2)+I(I_2-I_1)-V=0$ KUL at mesh(3) 9 $2I_3+Y(I_2-I_2)+2(I_3-I_1)=0$ $-2I_1-YI_2+8I_3=0$ Supermesh 8 $I_1-I_2=Y_9-8+2(I_1-I_3)+Y_1=0$ $Y(I_2-I_3)+6I_2=0$ $\Rightarrow I_1=Y.63A$ $I_2=0.63A$

I3=1.47A.

Chapter 4


Linearity Property.

a linearity is the property of an element describing a linear relationship between cause (input) and effect (response or output).

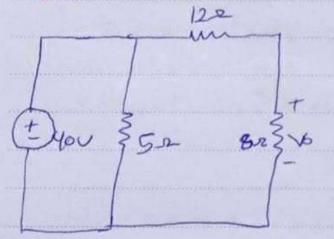
* The independent source are linear elements.

* The dependent source is linear if its output current or voltage is proportional only to first power of a specified current or voltage variable in the current

Exe Is = 30 A , Is = 45A

Vs=7.5x8=6000H.

Exercise To=1A I_4 , 6^2 V_2 , I_2 , I_3 , I_4 apply KChcul mode() I_3 I_4 I_5 I_5 I_5 I_6 I_7 I_8 I_8 I_8 I_8 I_8 I_8 I_8 I_9 I_9

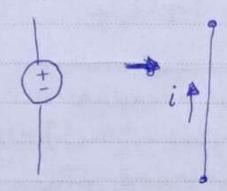

 $\frac{V_{2}-8}{2}=3 \Rightarrow V_{2}=140016$

 $I_3 = \frac{V_2}{7} = 2A.$

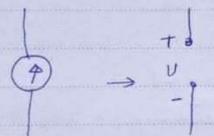
*apply KCL at node @ gives $Iu = I_3 + I_2 = 5A$

Is = 5A when assume Io=1A.

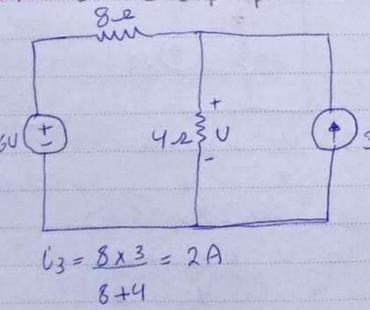
Exs



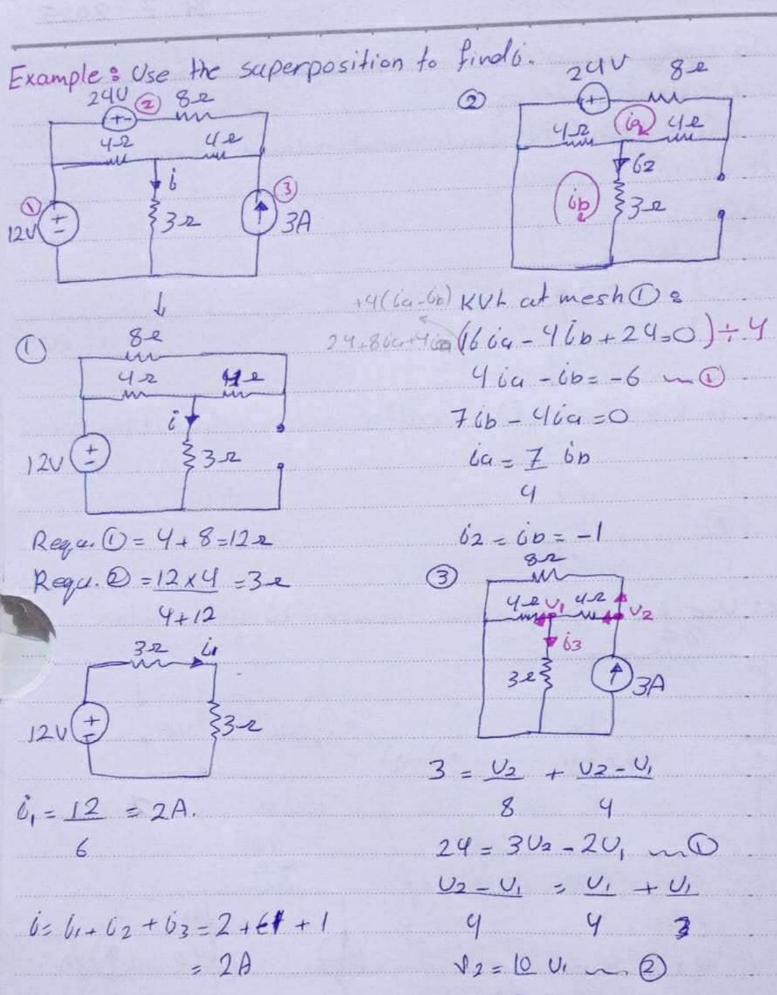
KUL & -40 + 12I + 8I = 0 40 = 20I I = 2A

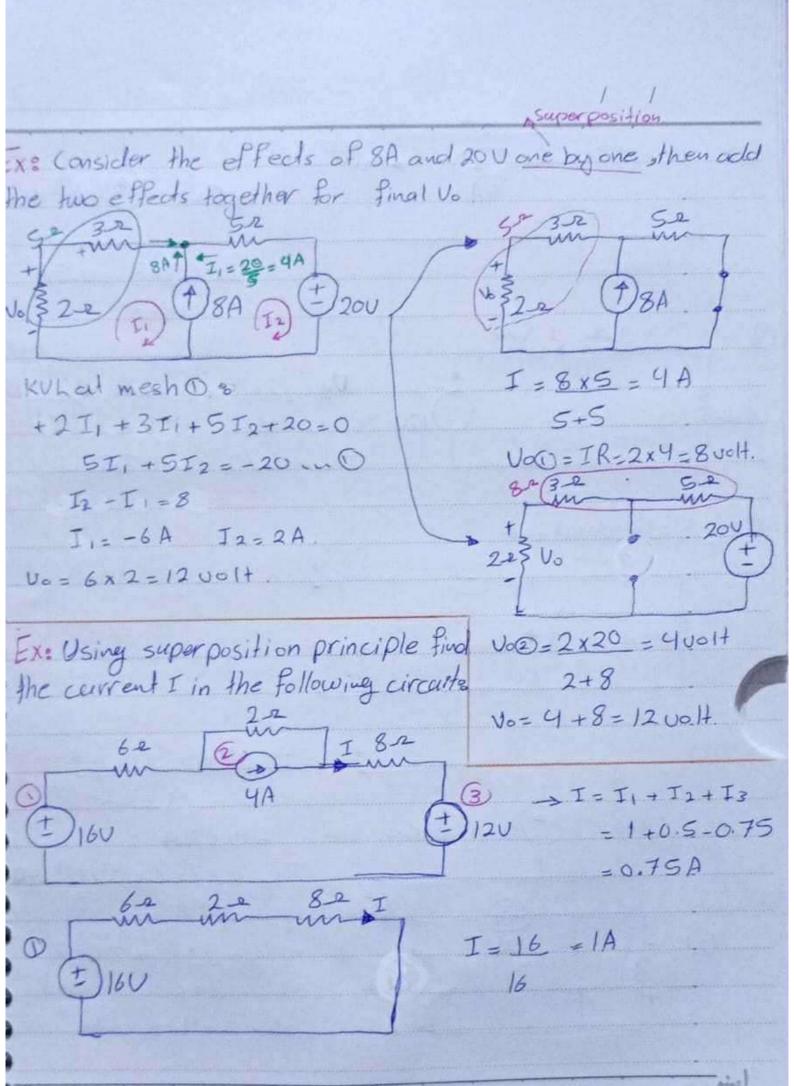

Uo = IR = 2x8 = 16001+.

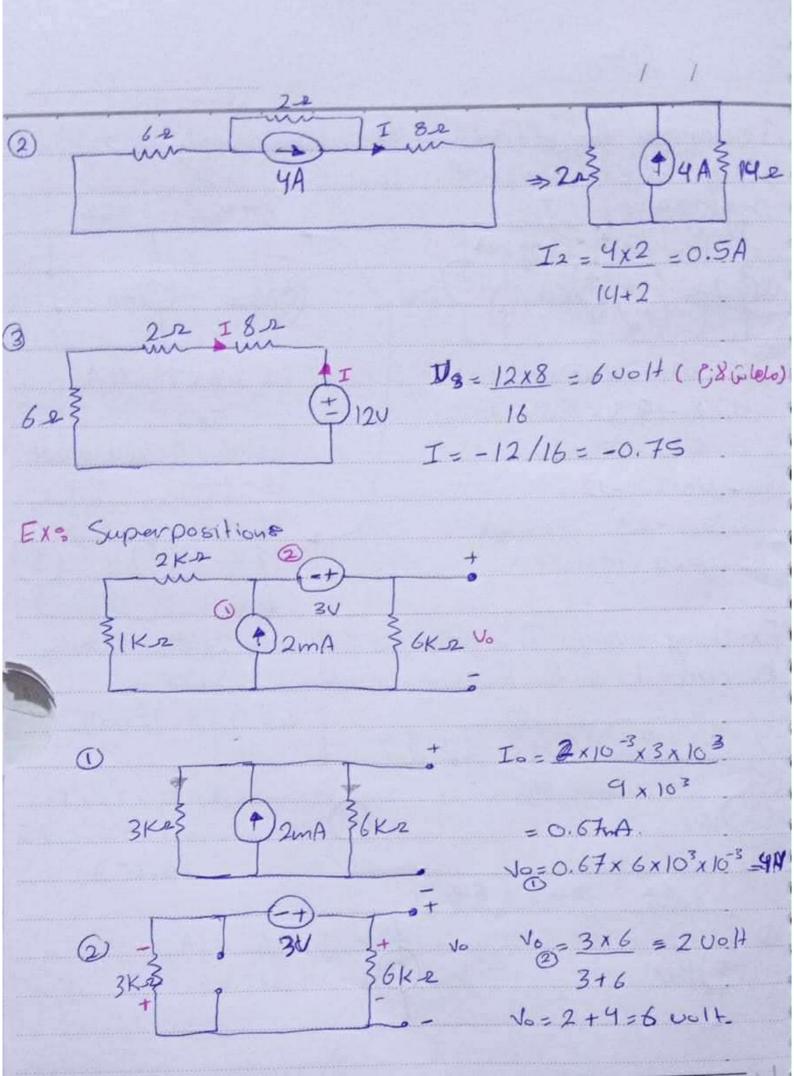
* To apply superposition must have two or more inclependent sources.


-> To Kill (Turn of) an independent voltage source, replace it by Shoul circuit.

-> To Kill (Turn of) current source preplace it by Opan.C


Ex: Use the superposition theorem to find u in thec.




U2= 4 x 2=8 volt U40101=U1 + U2 = 8+8= 10 voll (1) (1) (2) (3) (4)

+ \frac{1}{42} \frac{1}{2}

1 1

is the process of replacing a voltage source Vs in Series with a resistor R by a carrent source Is in parallel with a resistor Rorvice versa. Us=IsR Is (A) Is=Us Ex: SKR Y.TKR 3KR 4.7K2 3K2 = 3V 45V= ±)3V 1)4mA 35K2 3+-45+5000I+4700+30005 I=3.307 mA. 5ke } 97K3 347Ke (1) ImA (1)

and he was to be a few of Ix= 2x5 = 1A gricos 16 + 4.7+5 two current source SKe \$ \$4.7ke \$2mA

Exe parallel subto ونفع الاتحاه كمعهم Exe 3.2 4 3.2 4 2 2 3.2 4 12volt 8 5 12v () 2A D 362 Vo382 332 D4A 382 Vo 22 2A i = 2x2 = 0.4A 300 = (I) \$32 (I2) \$7-2 (I3)

1 1

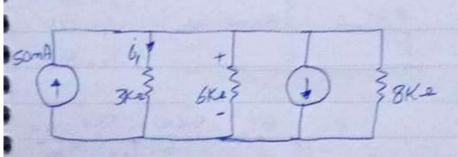
KUL at mesh(0) 8 -30+6I1+3(I1-I2)=0 -30+6I1+3I1-3I2=0 9I1-3I2=30-0 KVL at mesh(0):

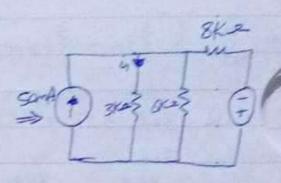
 $3(I_2-I_1)-5+7(I_2-I_3)=0$ $3I_2-3I_1-5+7I_2-7I_3=0$

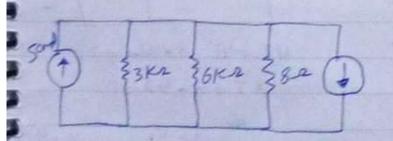
-3I, +10I2-7I3=5-0

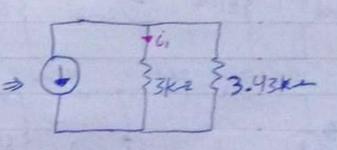
KVL at mesh 3:

7(13-12)+513+15=0

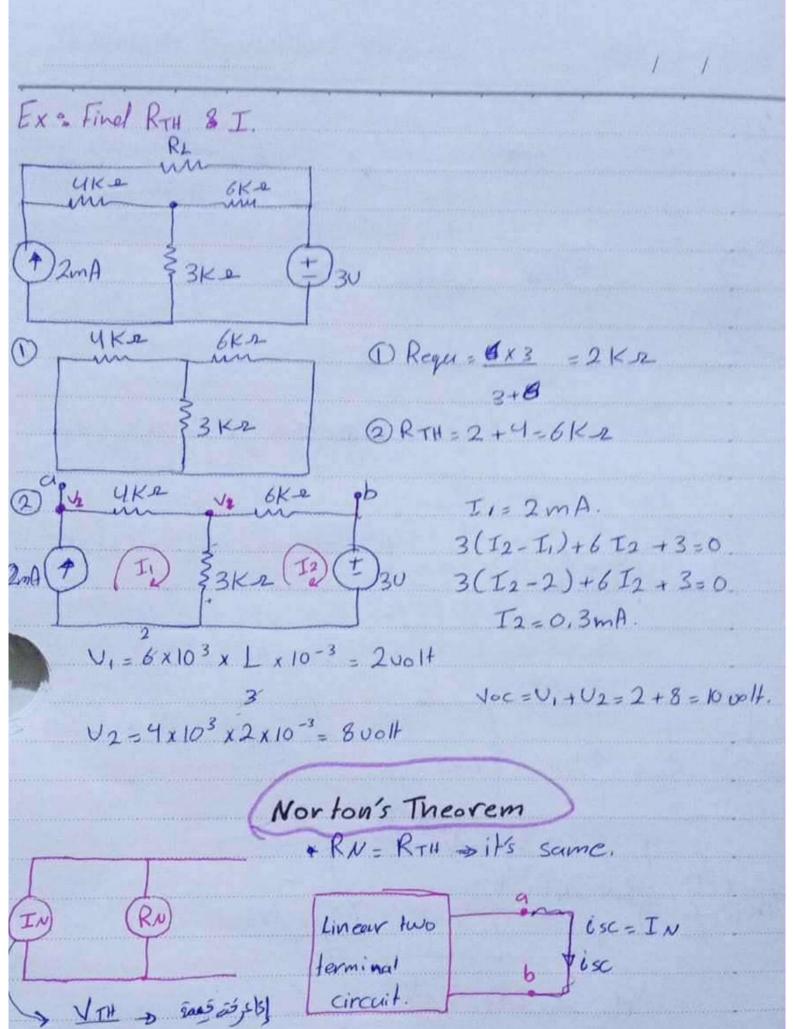

7 13 - 7 12 + 5 13 + 15=0


-7I2+12I3=-15-3


 $I_1 = 3.76 A$. $I_2 = 1.27 A$. $I_3 = -0.5 A$.


60= I3-I2 =-0.5-1.27 =-1.77A.

Ex:



Example of slide. Examples 62 \$ 5A \$72 (4)3A Examples 2K2 YK2 ot atresde (2) 8x/4-U2+0-V2=0 120 36KA 12mA 38KR VO 2K2 4K2 - 24,-342=9 UM 1 38K2 36K2 (Vo) JI= 124 R=3x6 =2K2 BU 4K2 4Ke 51/2+ 4I+4I+8-4000. 4Keaks ake 4Ke + 8I+8-8Ix0 -20, +12=16 -0 -

عطارة

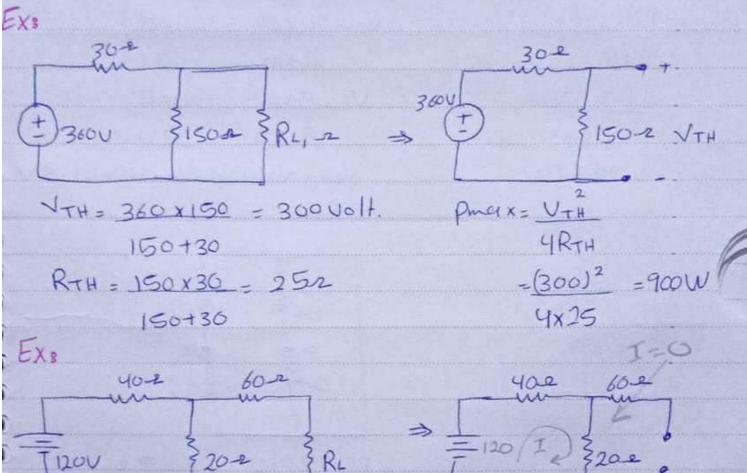
Example: Find the Thevenin equivalent circuit, Then find the current through RL=6. (+) 32U \$12e (+) 2A \$RL => + 32V = \$12.0 + 2A YTH -32+4I,+12(I,-I2)=0 I2 = -2A VTH = 12 (I, - I2) = 12(0.5+2) = 30 V * Toget RTH we must Kill all sources. 9 RTH = 12 X4 + 1 = 42 IL = VTH = 30

المصارة

RTH LOGINUS

- was more would reduce the Ext Final the Norton Exs equivalent circuit. Regu. 0 = 8+8+4 = 20-2 Regu. 0 = 8 20 X5 = 42 20+5 I, = 2A 2012-41,-12=0 , 650 I2 = 1A = GSC = IN (S(V) 0) 4 | अवीर के के हिंदी हैं। ou let me Bitain (مح ع. 5 التارفيها عن

* The Thevenin equivalent is useful in finding the maximum, power a linear circuit can deliver to a load. * Assume the load has variable resistor. a The power delivered to the loadis: P= 6 RL = (VTH | RL Progx = V2TH = Rugx Example (4.13): find the value of RL for maximum power 9 Transfer in the 12V P 2A Frod the maximum RL = RTH -> maximum value of RL. $\frac{3^{2}}{\sqrt{10^{2}}}$ $\frac{2^{2}}{\sqrt{10^{2}}}$ $\frac{2^{2}}{\sqrt{10^{2}}}$


$$-12 + 6I_1 + 12(I_1 - I_2) = 0$$

$$I_2 = -2A$$

$$18I_1 - 12I_2 = 12 - \odot$$

$$I_1 = -2/3A$$

$$-12 + 6I_1 + 3I_2 + 2(G) + VTH = 0 \Rightarrow VTH = 22V$$

 $P_{\text{max}} = V_{\text{TH}}^2 = (22)^2 = 13.44W$
 $4R_{\text{L}} = 4x9$

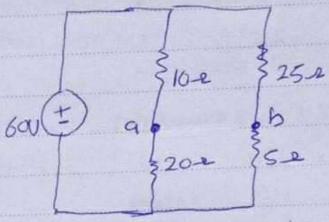
VTH= 20 (120) Pour-(40)2 RTH = 40x20 + 60 = 73.3 -1 4x73.3 40+60 40+20

-120+40I+20ID = 40V =5.46W

60 T = 120 -> I = DA - TR- 2x20110011

ALADIB ...

Ex8


10 = 25 10 = 25 20 = 5

(3)
Pmax=(VTH)2
URL
= (30)2

4x10.83

= 20.77W

O evaluate VTH

Va = 20x60 = 40volt.

20+10

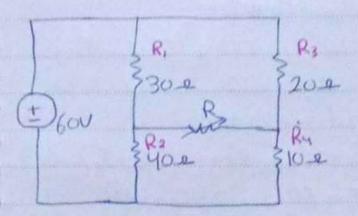
Vb = 5x60 = 100017

Vth = Vab = Va - Ub = 40-10=30V

2 RTH

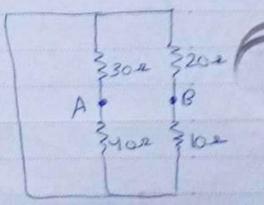
102m 252 a b b m 52

RO = 20x10 = 6.67+

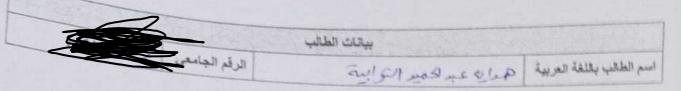

10+20

RQ=25*5 = 4.16-2

25+5


RTH = 6.67 + 4-16 = 10.83-2.

Ex3



Pmax= (VTH)2 4 RL =(14.28)2 41×23.8 = 2.14W

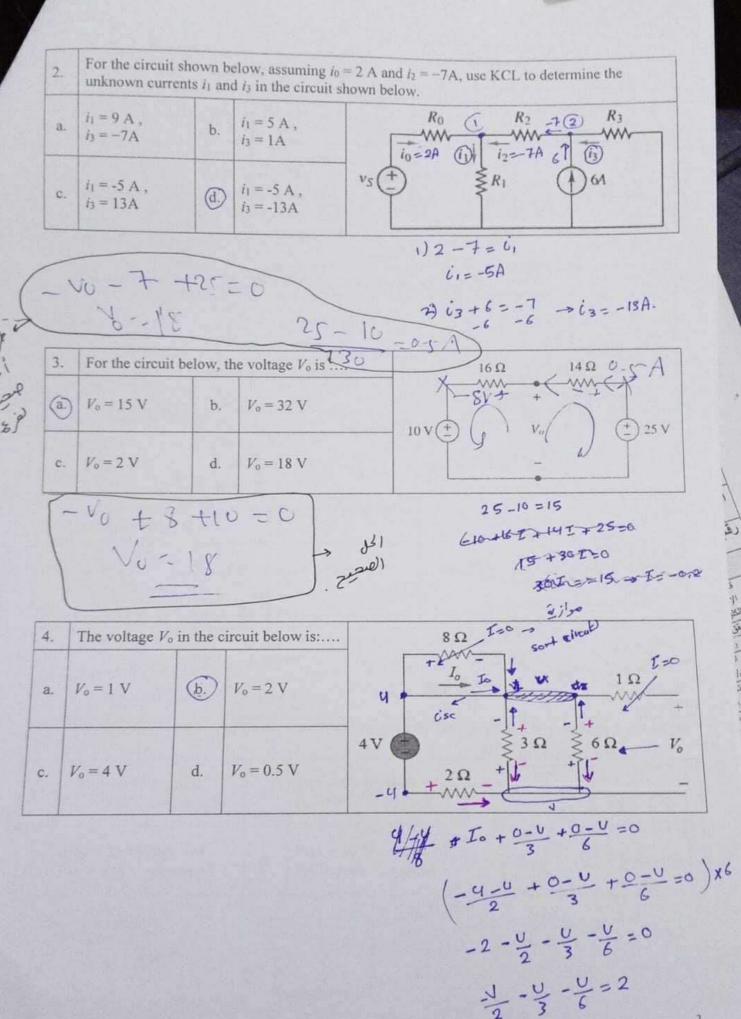
 $VA = 60 \times 40 = 34.28 \times 11$ 40 + 70 $VB = 60 \times 10 = 20 \times 011$ 10 + 20 VAB = VTH = 34.28 - 20 $= 14.28 \times 011$

PO = 30×40 = 17.1-e 30+40 RE = 20×10 = 6.7 10+20 RTH=17.1+6.7=23.8-e Midteryn-Exam

Grade: 2..../30

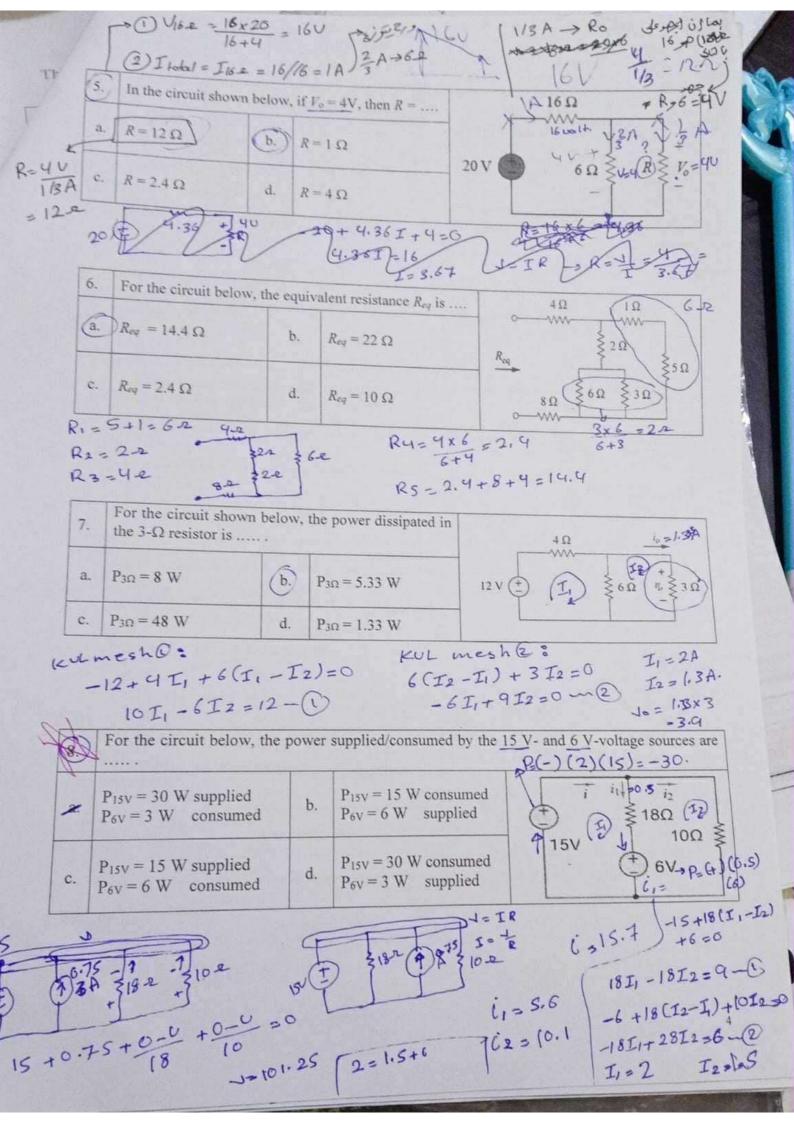
ANSWER SHEET

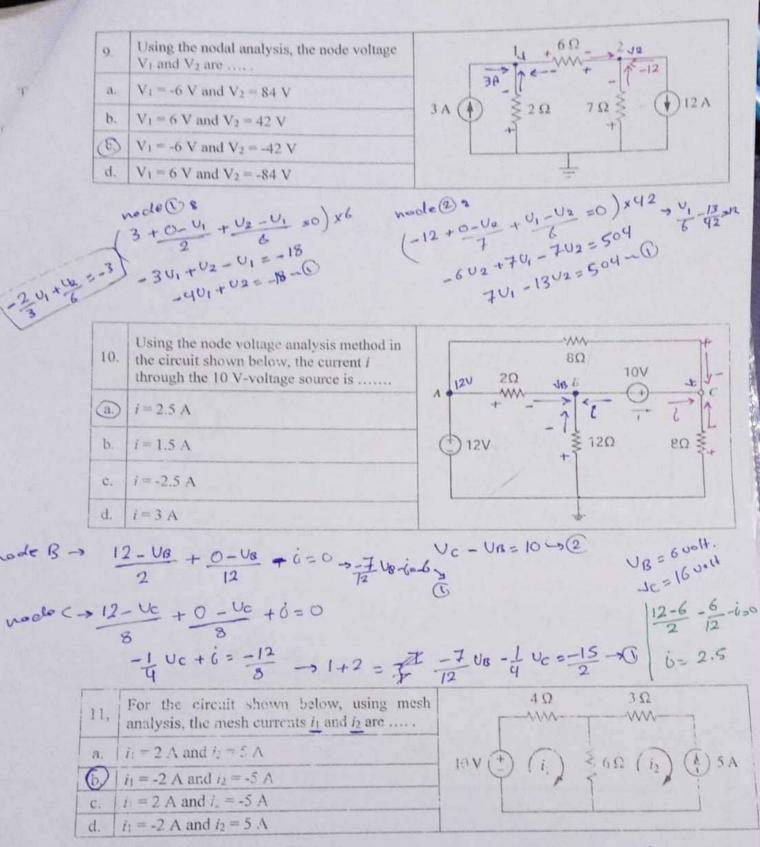
QUESTION#						
1.	ANSWER					
2.	a	ь	0	d	,	
3.	a	ь	c	(0)		
4.	<u>a</u>	ь	c	d		
5.	a	(b)	c	d		
6.	a (a)	(P)	c	d		
7.	a	b	С	d		
18.		(b)	c	d	,	
9.	(a)	ь	С	d	1	
10.	a	ь	0	d	,	
11.	<u>a</u> .	Ь	c	d	7	
12.	a	(5)	c	d	1	
13.	a	Ь	©	d	1	
(142)	a	b	0	d	,	
/15.	a	(B)	c	d		
16.	a	(b)	c	d	1	
10.	a	b	(0)	d)	


Select the correct answer for each of the following statements and fill the correct answer in the Answer Sheet provided. Show the calculations for all Questions

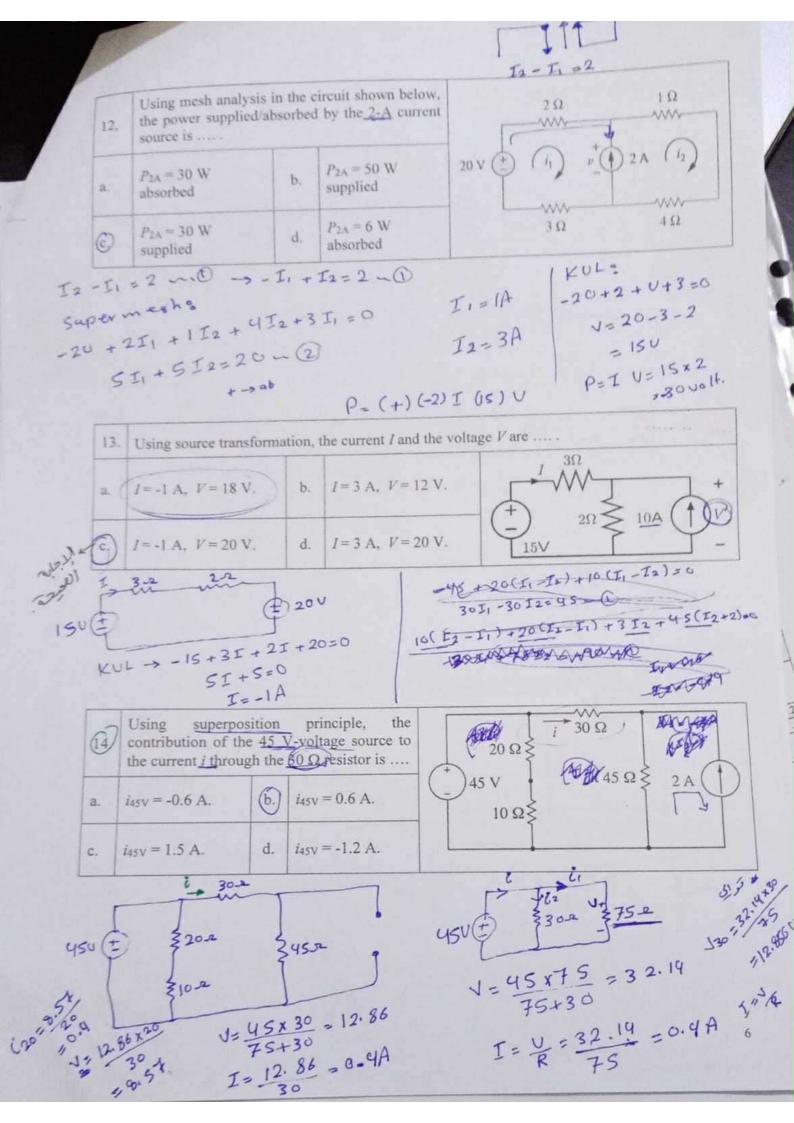
1.	The current I in the circuit shown below is:		cuit shown below is:	10 1
a.	I=-0.8 A	ь.	I=0.8 A	
(c.)	I=-0.2 A	d.	I= 0.2 A	6Ω

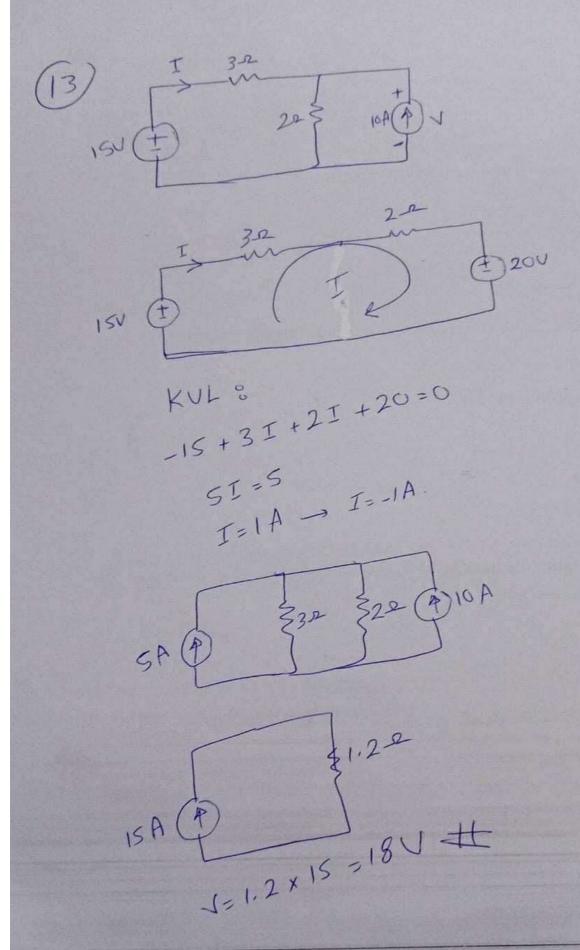
$$-3 + 4I + 5 + 6I = 0$$

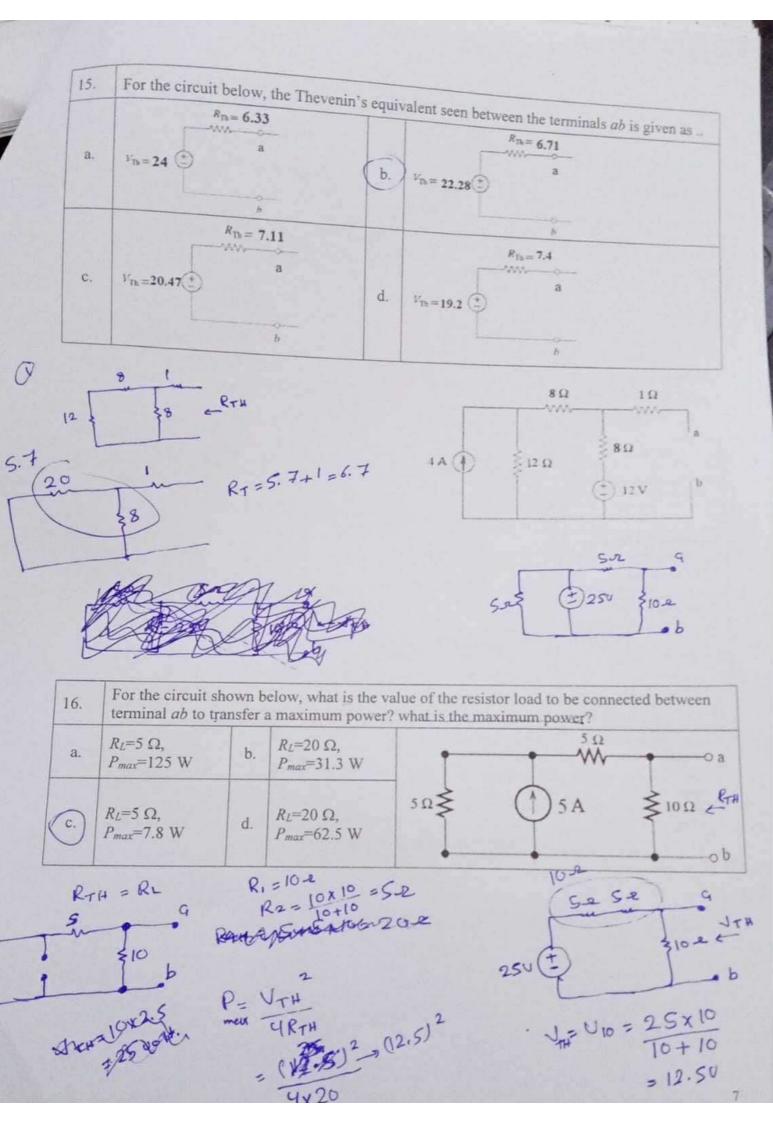

$$\frac{10I = -2}{10}$$


$$I = -0.2A$$

3

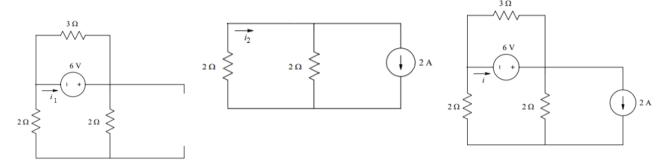

- V= 2 2 Volt.





KUL at mesh(): $-10+4I_1+6(I_1-I_2)=0 \rightarrow I_1=-2A$. KUL at mesh(2): KUL at mesh(2): $I_2=-5 \rightarrow \text{by interspection.}$

5



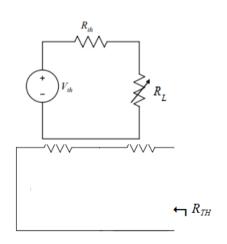
Question #1 (6 points)

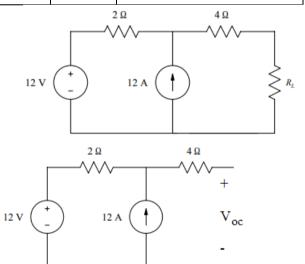
For the circuit shown below, use the **principle of superposition** to find the current *i*. Draw the corresponding circuit diagrams

a.	Find the current i_1 due to the 6-V voltage source.	$i_1 =$	3.5 A	1
b.	Find the current i_2 due to the 2-A current source.	$i_2 =$	1 A	1
c.	Find the total current <i>i</i> due to both sources.	i =	4.5 A	.

Solution:

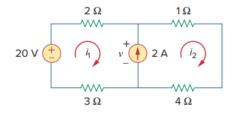
$$\overline{i_1} = 6/3 + 6/4 = 3.5 \text{ A}$$


$$i_2 = 2 \times 2(2+2) = 1$$
 A


$$i_2 = 2 \times 2(2+2) = 1 \text{ A}$$
 $i = i_1 + i_2 = 3.5 + 1 = 4.5 \text{ A}$

Question # 2 (6 points)

For the circuit shown below, find


a.	the load resistance R_L for maximum power transfer	$R_L =$	6	2	
b.	the Thevenin equivalent voltage using source transformation technique.	V _{th} =	36 V	7	
c.	the maximum power absorbed by the load R_L .	P _{max} =	54 V	Į	

Solution:

$$\begin{array}{ll} \hline R_{th} = & 2 + 4 = 6 \ \Omega \\ \hline P_{max} = & V_{th}^2 / (4 \times R_{th}) = & (36 \times 36) / (4 \times 6) = 54 \ W \end{array}$$

a) Mesh Equations

From Mesh 1:

$$5i_1 + 5(i_1 + 2) = 20$$

Simplifying:

$$5i_1 + 5i_1 + 10 = 20 \Rightarrow 10i_1 = 10 \Rightarrow i_1 = \boxed{1 \text{ A}}$$

From the current source constraint:

$$i_2 = i_1 + 2 = 1 + 2 = \boxed{3 \text{ A}}$$

b) Voltage across the current source

Method 1:


$$v = 5i_2 = 5 \cdot 3 = \boxed{15 \text{ V}}$$

Method 2:

$$v = 20 - 5i_1 = 20 - 5 \cdot 1 = \boxed{15 \text{ V}}$$

Final Answers:

$$i_1 = 1 \text{ A}, \quad i_2 = 3 \text{ A}, \quad v = 15 \text{ V}$$

Nodal Equations:

$$\left(\frac{1}{60} + \frac{1}{30} + \frac{1}{10}\right) V_1 - \frac{1}{10} V_2 = 6$$
$$-\frac{1}{10} V_1 + \left(\frac{1}{10} + \frac{1}{30} + \frac{1}{20}\right) V_2 = 0$$

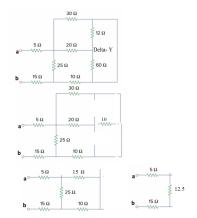
Simplified Form:

$$\frac{3}{20}V_1 - \frac{1}{10}V_2 = 6$$
$$-\frac{1}{10}V_1 + \frac{11}{60}V_2 = 0$$

Cleared of Fractions: $3V_1 - 2V_2 = 120$, $-6V_1 + 11V_2 = 0$

Solutions:

$$V_1 = \frac{440}{7} = 62.86 \text{ V}, \quad V_2 = \frac{240}{7} = 34.29 \text{ V}$$


Current through the $10~\Omega$ resistor:

$$I_3 = \frac{V_1 - V_2}{10} = \frac{62.86 - 34.29}{10} = \frac{20}{7} = 2.857 \text{ A}$$

Power supplied by the 6A current source:

$$P_{6A} = -V_1 \cdot 6 = -62.86 \cdot 6 = \frac{-2640}{7} = -377.14 \text{ W}$$

Equivalent Resistance and Circuit Analysis Questions

To find the equivalent resistance between terminals a and b, we simplify the network step by step using series-parallel combinations and an effective transformation based on recognizing a short circuit.

The triangle formed by $12\,\Omega,\,60\,\Omega,$ and a short circuit $(0\,\Omega)$ can be replaced by:

$$R = \frac{12 \cdot 60}{12 + 60 + 0} = \frac{720}{72} = 10 \,\Omega$$

This $10\,\Omega$ resistor is in series with a $20\,\Omega$ resistor:

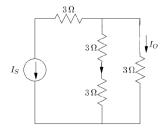
$$R_1 = 10 + 20 = 30 \Omega$$

The result is in parallel with a $30\,\Omega$ resistor:

$$R_2 = \frac{30 \cdot 30}{30 + 30} = \frac{900}{60} = 15\,\Omega$$

Adding 10Ω in series:

$$R_3 = 15 + 10 = 25 \Omega$$

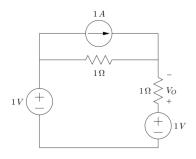

Now this is in parallel with a $25\,\Omega$ resistor:

$$R_4 = \frac{25 \cdot 25}{25 + 25} = \frac{625}{50} = 12.5 \,\Omega$$

Adding the final series resistors $5\,\Omega$ and $15\,\Omega$:

$$R_{\rm eq} = 12.5 + 5 + 15 = \boxed{32.5\,\Omega}$$

Current Divider (Q2_B)


In this circuit, the total current I_s splits between two branches:

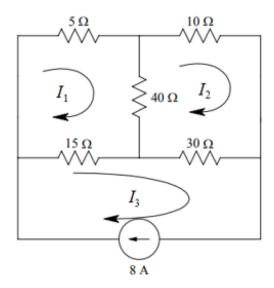
- Left branch: two $3\,\Omega$ resistors in series $\to R_1=6\,\Omega$ - Right branch: one $3\,\Omega$ resistor $\to R_2=3\,\Omega$

Using the current divider rule:

$$\frac{I_o}{I_s} = \frac{R_1}{R_1 + R_2} = -\frac{6}{6+3} = -\frac{6}{9} = -\boxed{\frac{2}{3}}$$

textbfVoltage Calculation (Figure 4)

Walking through the loop clockwise:


- Bottom voltage source: +1 V - Middle resistor: 1 A · 1 $\Omega=+1$ V - Top voltage source: -1 V

Using KVL or voltage division:

$$V_o = (1 \text{ V} - 1 \text{ V} - 1 \text{ A} \cdot 1 \Omega) \cdot \frac{1}{1+1} = -1 \cdot \frac{1}{2} = -\boxed{0.5 \text{ V}}$$

2

Question 3: Mesh Analysis

a) Mesh Equations:

$$60i_1 - 40i_2 - 15 \cdot 8 = 0$$
$$-40i_1 + 80i_2 - 30 \cdot 8 = 0$$

Answer:

$$i_1 = 6 \text{ A}, \quad i_2 = 6 \text{ A}, \quad i_3 = 8 \text{ A}$$

b) Current through the 30 Ω resistor:

$$i_{30\Omega} = i_2 - i_3 = -2 \text{ A}$$

c) Power dissipated by the 15 Ω resistor:

$$P_{15\Omega} = (i_1 - i_3)^2 \cdot 15 = (-2)^2 \cdot 15 = 60 \text{ W}$$

d) Power balance check:

Voltage across the 8 A current source:

$$V_{\rm source} = \frac{P_{\rm absorbed}}{I} = \frac{2340}{8} = 292.5 \text{ V}$$

Power supplied by the current source:

$$P_{\text{source}} = V \cdot I = 292.5 \cdot 8 = 2340 \text{ W}$$

Total power absorbed by resistors:

$$P_{15\Omega} + P_{60\Omega} + P_{30\Omega} = 60 + 2160 + 120 = 2340 \text{ W}$$

Conclusion: Power supplied equals power absorbed. $\sum P = 0$ is satisfied.

Chapter 6

OC-CIRCUIT

30 17 12025

dulat

I Capacitors and inductors are called energy storage elements. 12) A capacitor is a passive element designed to store energy in it's electric field. B) A corporation consists of two conducting plates separated by an insulator (or dielectric). [4] Corpacitance Cris the vatio of the change 9 on one phate of a capacitor to the voltage difference v between the two phates, measured in favacls (F). 9 = CV C=EA * permittivity. [5] If i is flowing into the tre terminal of C *Chevrginy > 6 is (+ve) -6 +16.
*Dischoorging > 6 is (-ve) C El The current-voltage relationship of capacitor according to above convention is i= C dv V= 1 1 6 d6 + Vo (to) The energy, w, stored in the capacitor is:

W=1 CV2 B) A capacitor is Slope=C * an open circuit to de (dv/df=0). Vists voltage cannot change abraptly & Units F, PF (10-12), nF (10-9), AF(10-6)

Example (6.1) a) Catculate the charge stored on 3 PF capacitor with 200 across it. b) find the energy stored in the capacitor. a) 9=CV = 3x10-82 x20 =60 PC. b) # w= L Cv2 = L x3 x 10-12 x (20)2 = 600 PJ. what is the Power? P = dw = 0of P = Vi = (20)(Cdv) = 0

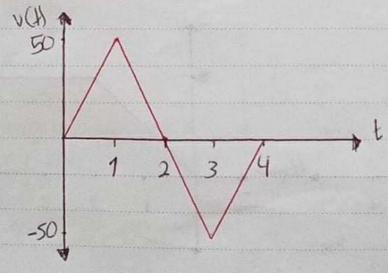
Example (6.2)

The voltage across a 5-MF oupacitor is UC+)=10 cos60006 U = W=2Tf Colculate the current through it. f=1

i(t) = C do = 5 x 10 -6 x d (10 cos 6000 6) = - 5x10-°x6000 x10 sin 6000t = -0.3 sin 6000t A. * Discharge capacitor because the sign of U&I

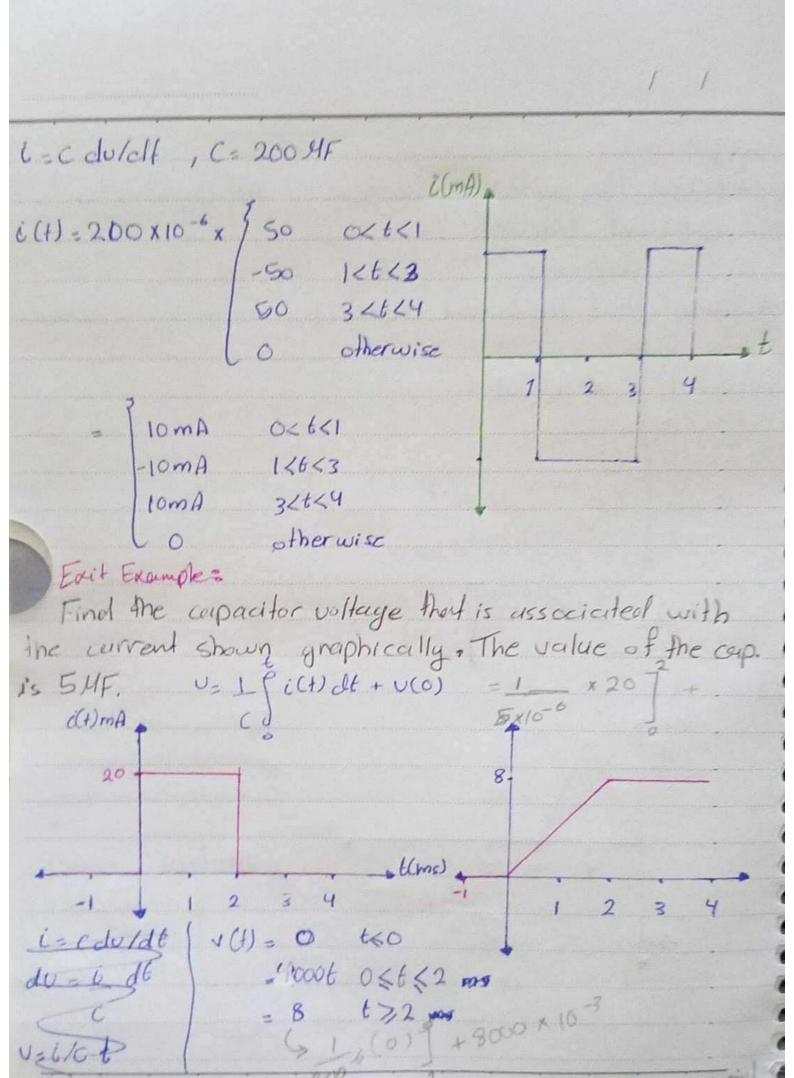
is different.

Example (G3)s


Determine the voltage across 2-4F cyxicitor if the current through is the current through is i(t) = 6 e 30006 mA

Assume that the initial capacitor us lage is zero.

$$V = \int_{C}^{E} i \, dt + U(0)$$


$$= \frac{3 \times 10^{3}}{3000} = \frac{3000}{3} = (1 - e^{-3000}) \vee \frac{1}{3000}$$

Example (6.4) &

Defermine the current through 200-HF copacitor.

$$v(t) = \int 50t$$
, $0 < t < 1$
 $100 - 50t$, $1 < t < 3$
 $-200 + 5t$, $3 < t < 4$
 0 , otherwise

Example (6.5): In Oc circuit each capacitor replace O.C. w=LCU 01016 = 3 (6mA) = 2mA (4+2) 3+2+4 U,= 2000 i = 4 U U2=4000i =8U $w_1 = L C_1 u_1^2 = L (2x10^{-3})(4)^2 = 16mJ$ + destal 80 w2 = 1 C2 V22 = 1 (4x10-3)(8)2= 128 mJ Prectice Problem (6.1) Wheet is the voltage across a 4.5-44 capacitor if the charge on one plate is 0.12 mc? How much energy is stored? i= cdu V-9 = 6.12×16-3 = 26.67 volt 4.5x10-6 U= 1 (cf) df + U(0)

W= 1 CV2 = 1 XOXXX X 16 x (26.67)

= 1.6 mJ

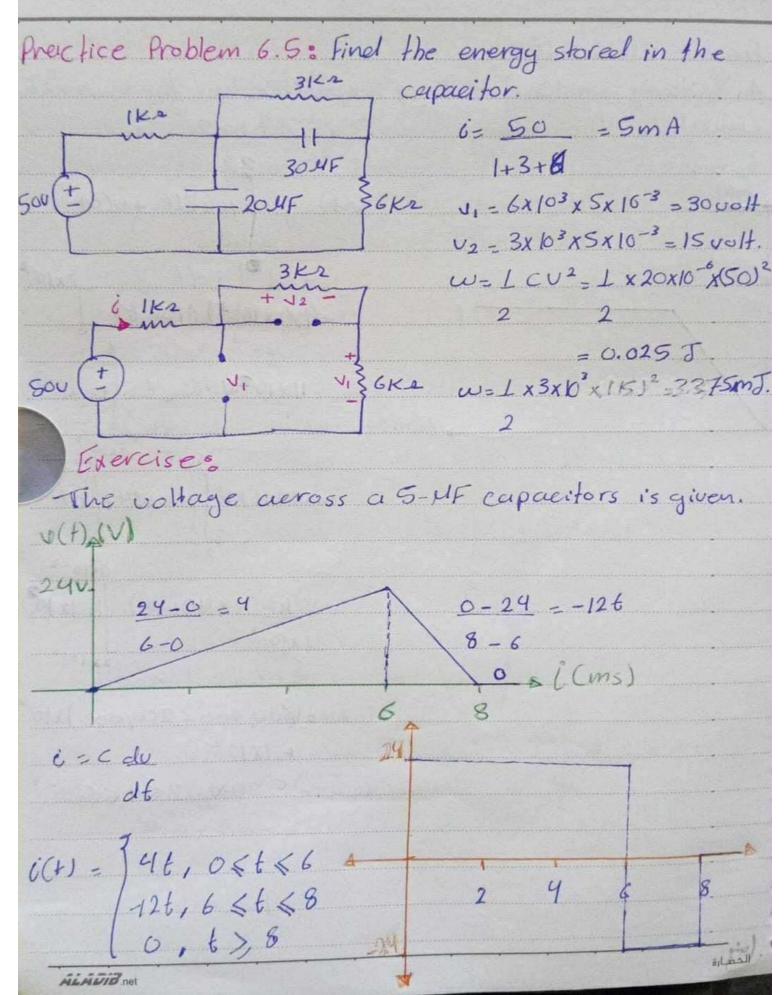
3

Parchice Problem 6.2:

If a 10-MF capacitor is connected to a voltage source with $u(t) = 75 \sin 2000t V$ determine the current through the capacitor.

i=c du = 10x10-6x75xcos 20006 x2000 de

= 1.5 cos (2000t) A.


Porætice Problem 6.38

The current through a 100-MF capacitor is i(t) = 50 sin (120 Tt) mA. Calculate the voltage across it at t=1ms and t=5ms. Take U(G)=0

U= 1 50 sin(120176) dt +6

 $= \frac{1}{100 \times 10^{-6}} \times 50 \times \frac{120 \text{ T}}{100 \times 10^{-6}}$

 $V(1) = 1 \times 50 \times (\cos(120 \text{ T} \times 1 \times 10^{-3}))$ 100×10^{-6}

Series and Parallel Capacitors * Copacitors in Parallels Cequ = C1 + C2 + C3 + + CN (1) C1 T C2 T C3 T Proofs i=i,+i2+i3+ ... +in i = C1 du + C2 du + C3 du + m + CNdu dt dt dt i () Coy # 0 = ZCK du = Cegadu

Hi dt d6 * Capacitors in series: L = L + L + L + L + CN

Cequ C1 52 C2 CN Ceq = C1C2 (Cq F) U=U1+U2+U3+1111+CN $V = \int \int \frac{i(\tau)d\tau}{t} + v_1(t_0) + \int \int \frac{i(\tau)d\tau}{t} + v_2(t_0) + \dots$ $C_1 \int \frac{i(\tau)d\tau}{t} + v_2(t_0) + \dots$ = | 1 + 1 + m + 1) | i(1) (T) v (to) + v2(to) = 1 | i(T) dT + v6

march for last Example (6.6) & Find the equivalent capacitance seen between terminals a and b.

SMF GUNF Q

11 SHF COMF COMP

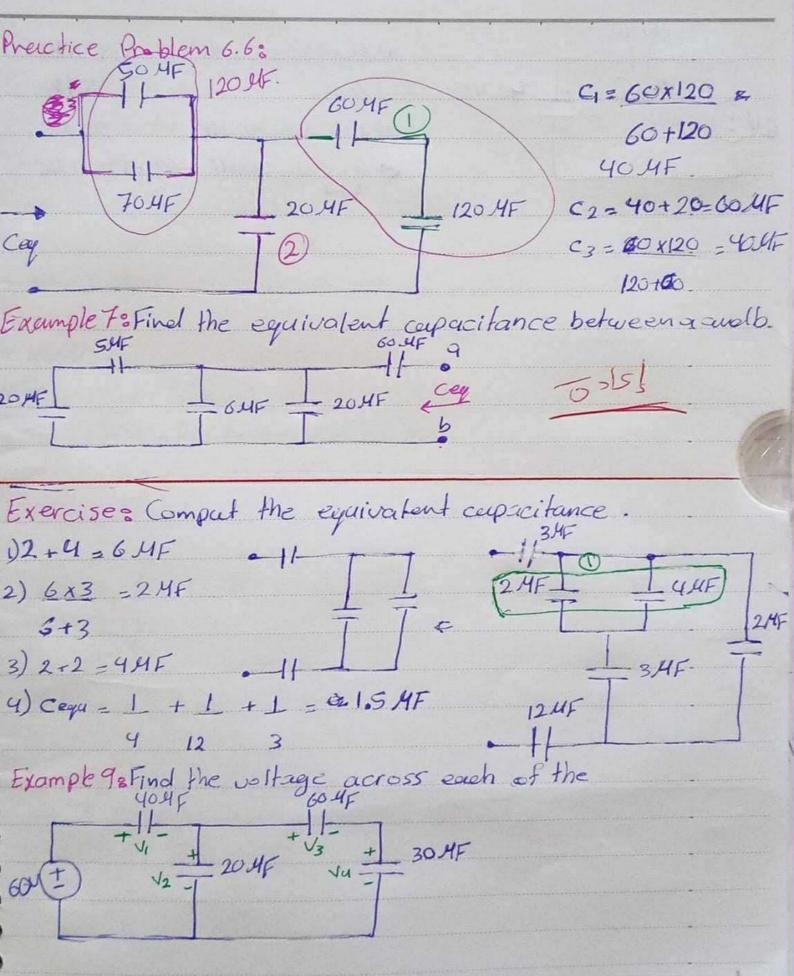
20 MF T 20 MF E 20 x 5 = 4 MF 20+5 4+6+20=30 Cequ= (30x60)/(30+60)=20H 6.18 Finel Ceq in the circuit if all corpacitors are 4.4.F (14x4 = 245 4+4 @ 2MF 32+4=6UF (4) 2+4=64F (5) 4+4=8MF 64F = - F.64F 6 1 + 1 + L = 0.4583K 8 6 6 Cequ = 2.18 MF. Example 6.7 stind the voltage across each capacitor.

C1 20mf C3 6mf

C3 + C4

C3 + C4

C3 + C4


C3 + C4

C4

C5 + C4

C6 20mf. Cegu: L + L + L = 10mf grotal = Cay (30) = 0.3C, charge acts like current, q = 92 - 92 about

V1 = 9L = 15V, U2 = 92 = 10V 9 03 = 30 - U2 - U2

Depassive element designed to store energy in it's magnetic

@ An industor consists of a coil of coundwesting wire.

3 Inductance is the property where by em inductor exhibits opposition to the change of current flowing through it. * Heasured in henrys (H).

V = L di and $L = N^2 MA$ d6 H = 4r Ho $Ho = 4T \times 10^{-7} (H/m)$

N-number of turns L > length

A > eross-section area.

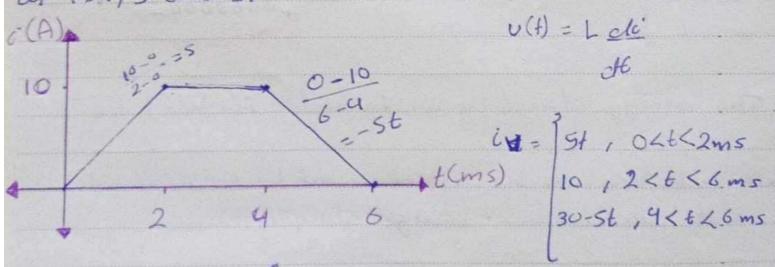
* The unit of inductors (mH) and (MH).

U-permeability of the Core.

* The current-voltage relationship of an inductory

+ The energy stored by an inductor is s W= LLi²

An inductors acts like a short circuit to decidilett =0) and its current cannot change abruptly.


+ V = L di

Example 6.8: The current through a 0.1 H inductor is c(t) 100. Find the voltage across the inductor and the energy stored

$$v=0.1 \frac{d(10te^{-5t})}{dt} = e^{-5t} + t(-5)e^{-5t} = e^{-5t}(1-5t)v$$

*The energy stored is:-
$$W = L Li^2 = L(0.1)(100) t^2 e^{-10t} = 5t^2 e^{-10t} J.$$

6.90 & The current through a 5-mH incluctors is shown in Figure. Determine the voltage across the incluetor at t=1,3 and 5.

$$V = L di = \frac{5 \times 10^{-3}}{0} = \frac{5}{0}, 0 < t < 2 ms$$

$$dt = 10^{-3} = \frac{5}{0}, 0 < t < 2 ms$$

$$-5, 4 < t < 6 ms$$

v= 125,06642ms 10,2<t<4ms 1-25,4<6<5. At t= lms , U= 250 Af 6=3ms, U=0U At 6=5ms, U=-25V 6.42° If the voltage is applied across the terminals of 5-H incluetor collecte the current through the incluetor. · Assume i(0) = - IA.

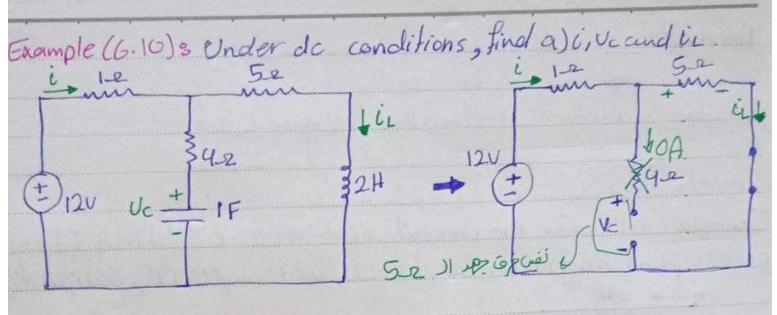
$$v(t)$$
 $i = 1$
 $vdt + t(0) = 1$
 $vdt +$

For 1 < t < 2, i = 0 + i(1) = 1AFor 2 < t < 3, i = 1 $find t + i(2) = 2t <math>\frac{3}{2} + 1 = 3A$

For $3 < \frac{1}{2} < \frac{1}{4} < \frac{1}{4$

the voltage across it is

 $U(t) = \frac{1}{306^2}, t>0$


Also, find the energy stored at 6=5s. Assume i(U)>0.

Since i = 1 Ju(t) dt + i'(to) and L= 5H.

i = 1 $\begin{cases} 30t^2 dt + 0 = 6 \times t^3 = 2t^3 A. \\ 5 \end{cases}$

 $\omega \int_{0}^{\pi} = \int_{0}^{\pi} Li^{2}(5) - \int_{0}^{\pi} Li(0) = \int_{0}^{\pi} x \cdot 5x(2x^{2})^{2} - 0 = 156.25kJ$

Secret and females Inductors

$$w_c = L Cv^2 = L (1)(10^2) = 50J$$

$$2 \qquad 2$$

$$w_L = L L i_L^2 = L (2)(2^2) = 4J$$

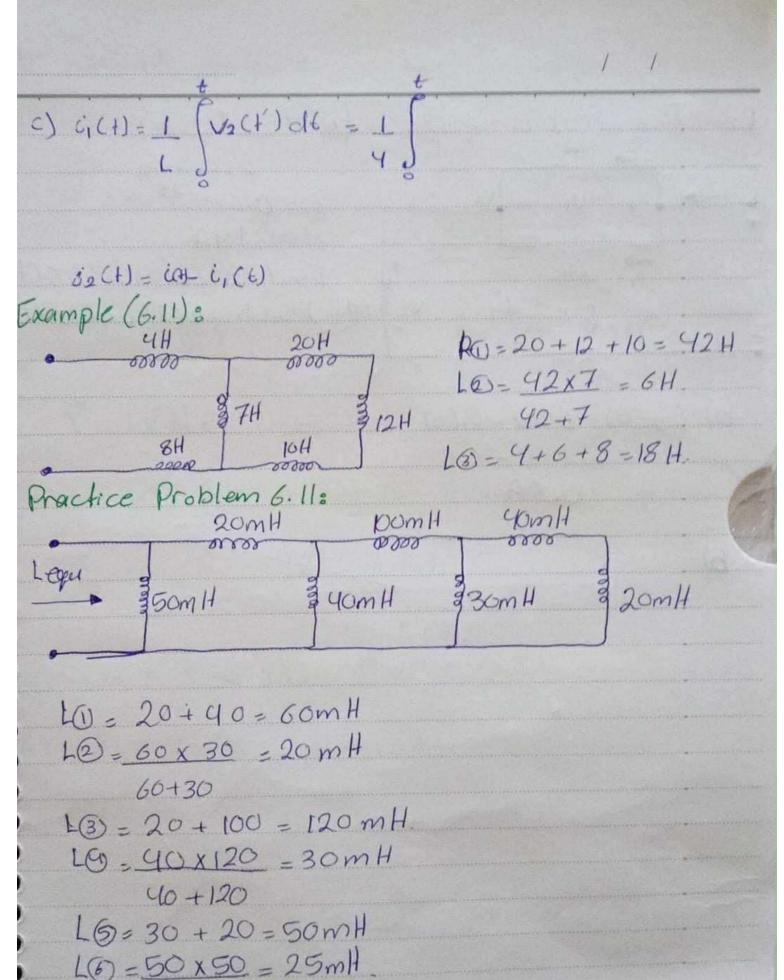
$$2 \qquad 2$$

رينيه الحضارة Series and Parallel Inductors.

Parallels 1 = 1 + 1 + 1 + ... + 1 Lega Li L2 L3 LN

For two incluetors in Parallel & Lega = Li L2

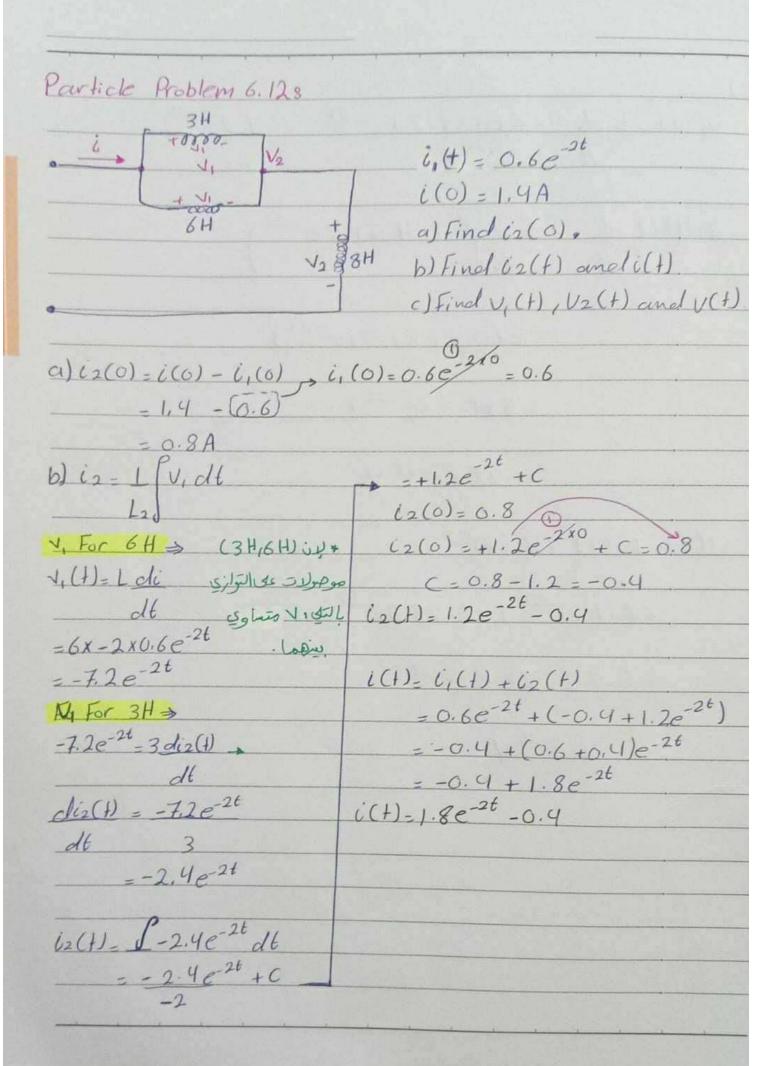
Series & Lega = L1 + L2 + L3 + ... + LN Example (6.12): For the circuit, i(t) = 4(2-e-10t) mA. If i2(0) = -1mA. Find: (a) i(0), (b) v(t), v, (t) and (2(t), (c) i(t)/62


1 1

+ - 2H + + 00000- + 6i + 16i2 - 34H U2 312H

a) $i = i_1 + i_2$ $i(6) = i_1(0) + i_2(0)$ $4 = i_1(0) + -1 = i_1(0) = 5 \text{ mA}.$

b) + == V = Lequ = 5H V= Lequ ali =(5) (4)(-10)e = 200 e not MV


 $V_1 = 2 \frac{di}{dt} = 2(4)(-10)e^{-106}$ dt $V_2 = U - V_1 =$

ALADIB net

50+50

المضارة

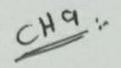
c) $v_1(t) = L di = 6 \times 0.6 \times -2 \times e^{-2t} = -7.2e^{-2t}$

12(t)=1di=8d(-0.4+1.8e-2t)

 $=8(0+1.8x-2xe^{-2t})$

-8x(-3,6e-2t)

=-28.8e-2t V


V(+)= (,(+) + V2(t)

 $=(-7.2e^{-2t})+(-28.8e^{-2t})$

= (-7.2 - 28.8)e-2t

=-36 e-26 V

Chapters-9+10

AC circuits Analysis.

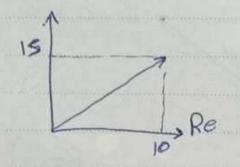
* Complex numbers

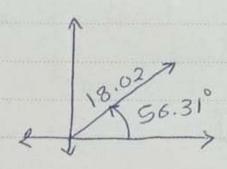
$$\overrightarrow{X} = c1 + jb$$
 (rectangual form)

 $a = Rc \ \overrightarrow{2}\overrightarrow{X} \overrightarrow{3}$

b=ImZXJ X = 171LO (Polar form).

* convert from rectangaler form to polar forms

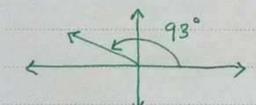

$$\vec{X} = a + jb$$
, $|\vec{X}| = \sqrt{a^2 + b^2}$


O= ten- (b/a) *Convent from Polar form to rectangular forms

$$\vec{X} = |\vec{X}| \angle \Theta \Rightarrow \alpha = |\vec{X}| \cos \Theta$$

Ex; X=10+j15, \$\sqrt{5\in0^2+15^2}\frac{\frac{15}{10}}{15}

= 18.02 \56.31°



Exs Find the polar form for each of the complex

number.

$$\vec{X}_{2} = -1 + j_{2}$$
 $\vec{X}_{1} = 9 + j_{2}$
 $= \sqrt{20} \text{ Vem}^{-1}(2/4)$
 $\vec{X}_{3} = -3 - j_{3}$
 $\vec{X}_{3} = -3 - j_{3}$
 $\vec{X}_{3} = -3 - j_{3}$

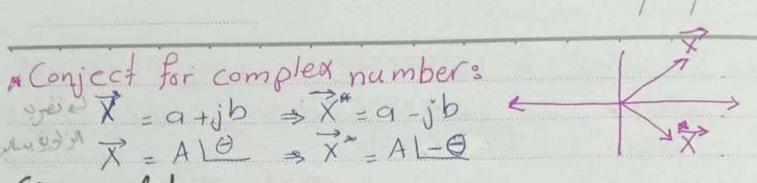
Ex: \(\vert = 100 \land \) = \(\vert = 110 \cos(93°) + \vert 110 \sin(93°) \)

= -5.76 +j 109.849

1

 $Ex: \vec{X} = 12 \frac{143^{\circ}}{3} \stackrel{\triangle}{=} 12 \frac{143^{\circ}}{360} = 12 \frac{1403^{\circ}}{360} = 12 \frac{14$

Sum 8 subtraction of two complex number (Preferred in the rectangular form). rectangular form) $X_1^2 = -9 + j2$ form


 $\vec{X}_1 + \vec{X}_2 = (3 + (-9)) + j(4 + 2) = -6 + j6$

 $\vec{X}_1 - \vec{X}_2 = (3 - 9) + j(4 - 2) = 12 + j(2)$ Multiplication 8 division (Preferred in Polar form). $\vec{X}_1 = 120 \cdot 1-89^\circ$ $\vec{X}_2 = 60 \cdot 112^\circ$

 $\vec{X}_1 \vec{X}_2 = (120)(60)(-89^{\circ} + 112^{\circ}) = 7200(23^{\circ})$ $\vec{X}_1 = 120(-89) = 120(112^{\circ}) = 2(-20)$

X2 60 112° 60

ALADIB ...

Sinu souelals

Example: (9.2)

Calculate the phoise angle between u=10 cos(wt+50) and u=12 sin (wt-10°).

U1 = +10 sin(wt +50-90) = +10 sin(wt-40°)

U2 = 12 sin (wt - 10°)

V2 leads V, by 30°. 90-10-50°. 12 10° Sin(wt

Particle Problem (9.2)

Find the phase angle between ij = -4 sin (377 t + 55°)

62= 5cos (377t -65°)

C1 = -4 cos (3776+55-90)

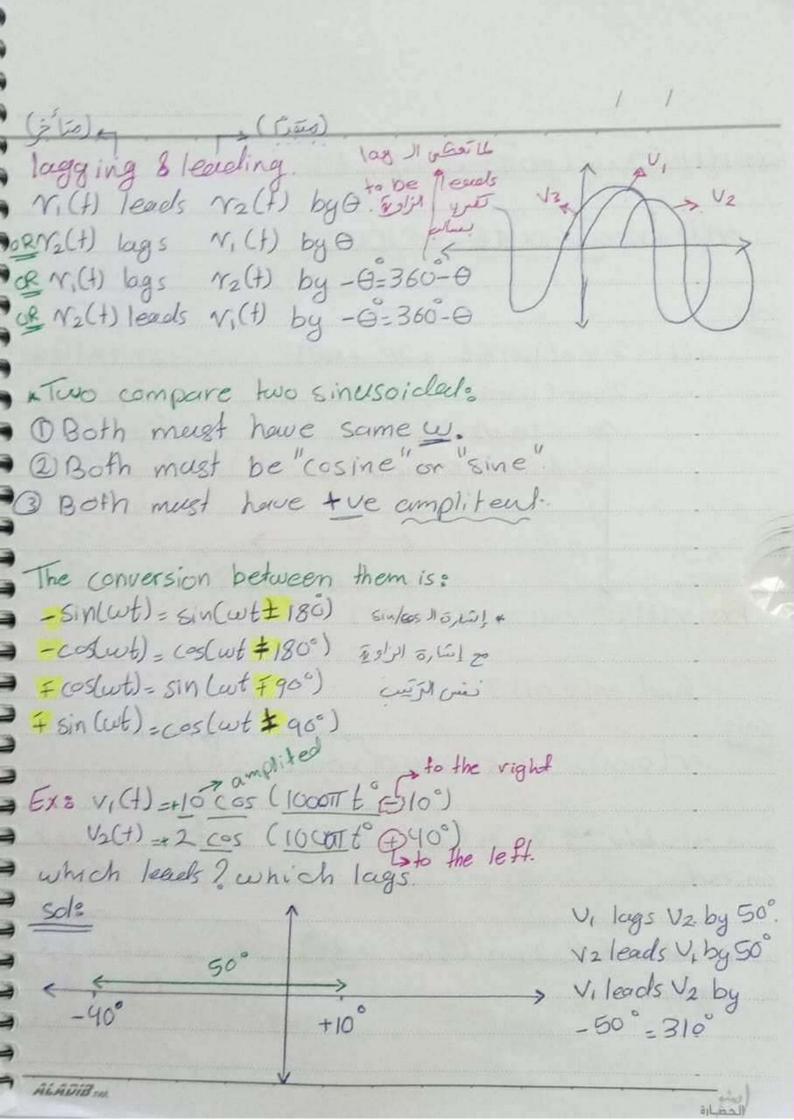
Does in lead or lagiz?

145

= -4cos (377t-35) = -4cos (377t+145°).

Sinsudal chemacteristics. 3 (05() m(6)= Vm sin(wt) Vm > Peak value (amplitude) WE - argument [rad] w=> vadion frequency [rad/sec] > Plot V(t) Vst & divide the (w6) - axis by wa f= 1 (HZ) - frequency => T= 2II

المطارة


Ex. ~ (1) = 20 sin (1000t), final f8T. frequency sel: W= 1000 -> f= W = 1000 = 159.15 Hz Period. = T = 1 = 6.283 m sec Ex: i(+)=10 cos(100T6)[A] W= 100 T = f= 100 T = 50 HZ ⇒T=L = 20msee. Hore general case: v(+)= Um sin(wt+0) Jm > Peak value or amplitude wt +0 -> argument [rad]/[degree] w -> radian frequency [rad/sec] O -> phase [rad] or [dgree) represent, the single shift to right on to left (a(+) NC+) = Vm sin (w++0) (1) 0 =0 -> N(4)

② 0 ×0 → M2(t) shift to right 3 0 >0 → M3(t) Shift to left.

many damental warm

ALADIA net

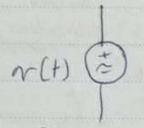
(3) 0 >0 -> M3(4)

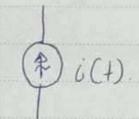
sol:

4

40

Ex1 ~(+) = 2 cos(200T 6 + 30°)


Find ~ (0.01)?


goar calculator
$$\stackrel{\triangle}{=} 2 \cos(2\pi + 30 \times \pi) = \sqrt{3} \Rightarrow \text{ order}$$

on rad 180 Dource

your calculator 2 (05 (360° + 30°) = 53 > radioo & 300 on degree.

ALADIB net

* Electric circuits that are driven by AC (sinnsoidal)

* Phasors :

Defi aphasor is a complex number that represent the amplitude and phase of a sinusoid. (the sinusoid has to be written as cosine with the amplitude).

lets V(+)= Vm cos(w++ Ov)

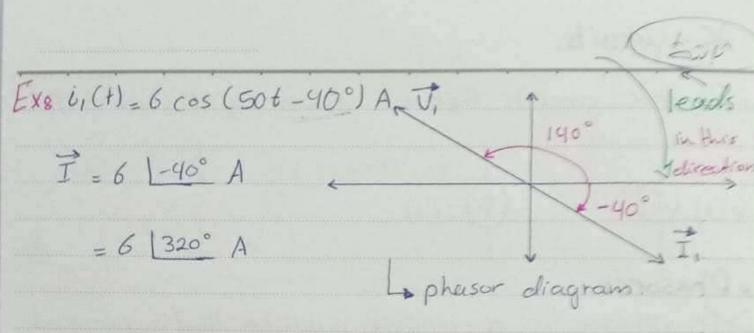
Time do. io word

= Re [Um lut + Qu]

= Re [Um LOV . 1 LWE]

amplitude (+) @
Phasor. 31, 05 (

this is the pheusour V=Vmlou


U(f) = Vm cos (wt + Ou) \$\vec{V} = Vm \lev

the same of currents

i(f)=Im cos(wt +Oi) = Im LOi

ALADIB net

المطارة

Vi(t) = -4 sin (30t + 50°) = 4 cos (30t + 56° + 90°) = 4 cos (30t + 140°)

) vi = 4 \140° => r,(+) leads i,(+) by 180°.

Ex : 7 = 30 1-20 mA

sol: i(1) = 30 cos(wt - 20°)mA.

Ex & V = -3+j4 U, Find U(+)

501-7=59+16 $tan^{-1}(41-3)=5$ $tan^{-1}(41-3)=5$

ALADIB net

الدخارة

solver to the

Ext Find i(+) = 4 cos (wt + 30°) + 5 sin (wt - 20).

sol- i(+)= i(+) + i2(t)

6, (+)=4cos (wt +30°) = I1 = 4 130°

i2(t) = 5 sin (wt -20°)

= 5 cos (wt -110) => I2 = 5 110°

= 4 30° + 5 1-110°

= 3.218 \-56.97

i(+)= 3.218 cos (wt - 56.97°).

Impedance

what is Impedance? can be delt as complex number.

Run >> ZR / Z = number such as 2

-11- >> Zl / Z = complex oud number(+) >> j2

-arm >> Zh / Z = complex (-) -> -j2

Z=R+jX1=1Z110 [2]
resistance (dissiaple) [3]
Reactance
emergy), originally (stores energy)

"Ohm's law directly applied;

Gu= Gi+ Gz

time domain complex domain

 $R = ZR = R L^{\circ}$ $L \qquad jul = ZL = ul L L^{\circ}$

 $\frac{-J}{\omega c} = \frac{1}{2c} = \frac{1}{2c$

ALADID net

الحضارة

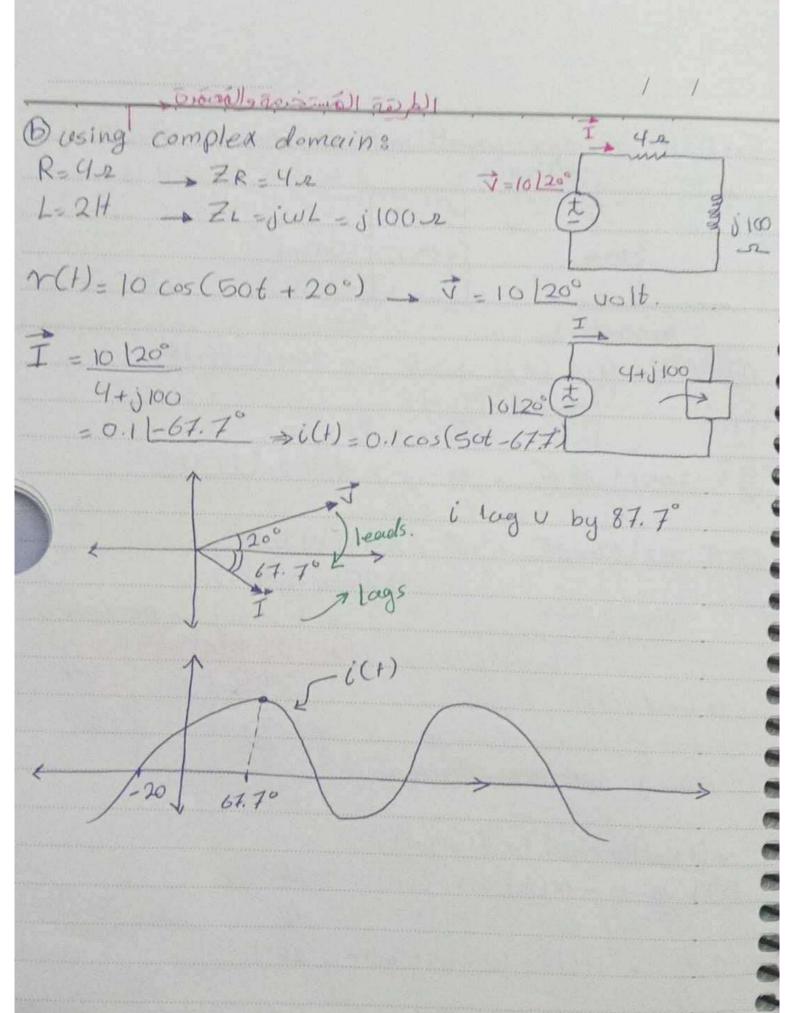
1 1

Time Z load typical Oz ISV Re pure resistance o In phase my jut-jXL pure inductive 90° I lags V by90° CITY - j1/we = jXc RAjXL pure corporaitive -90° Fleads V by 90° incluctive (not purity) + ve I lags V by 02 RUXC corpacitive (not purity) - VC I leads V by Oz Ex: If w= 10 rad /sec, specify the equivalent load for each of the following impedanus:

10 = 5 2 (Pure resistance) => R=52, R=52 @ Z = j20 a (Pure inductive) => L=2H, L-2H j20 = jwL ⇒ L= 20/w = 2H 3 = 1 = > Z=-j 1 > pure capacitive, C=2F -j 1 = -j 1 = wc = 20 -, C= 2F R=4 @ = 4+j3 > inclactive load WL= 3 => L= 3/10H R=2a C= 1/20F 5 Z = 2-j2 2 = capacitive load -j2 = -j 1 2= 1 = 1 = C

ALADID Net

الحطارة


Impedanes in series & voltage division: Impedentes in Parallel & current divisions IN= 1/2n I (corrent division) Zequ= 2, 22 Z1+Z2

ALADIB net

المضارة

Ex: Find the equivalent impedance : R R H -juL C -> -i J - J JTO 362 = 500mF wc w= 5rad/sec -10.42 ()6/1-jo.4 = (6)(-jo.4) = 0.39911-86.18° 6-10.4 @ 0.3991 \-86.18° +j10 -j = 8.602 \89.823° 3 8.602 \ 39.823° //10° = 6.5 11 \49.19° = 4.255 (7) 4.93 2 Regu = 4.2552 -> lægging impedence اله لان إشارة الرز) موجبة دائمًا نسميها 1,93/5 له لاون الشارة الرز) موجبة دائمًا نسميها المسارة الرزاية المسارة الرزاية المسارة الرزاية المسارة الرزاية المسارة الرزاية المسارة الرزاية المسارة المسارة الرزاية الرزاية الرزاية المسارة المسارة المسارة الرزاية المسارة المسارة الرزاية المسارة المسا Ex= find i(+) @ cesing time - domain rct) (3) g 2 H. (b) complex - domain. ~(+)=10 cos (50+ 20) @ KVL 8 - N(+) + 4 i(+) + 2 di = c 2 di + 4i(t) = 10 cos (50t + 20°) يكم إلى دى سى *we need to solve 1st ordan diff - equation 1 3

all nall

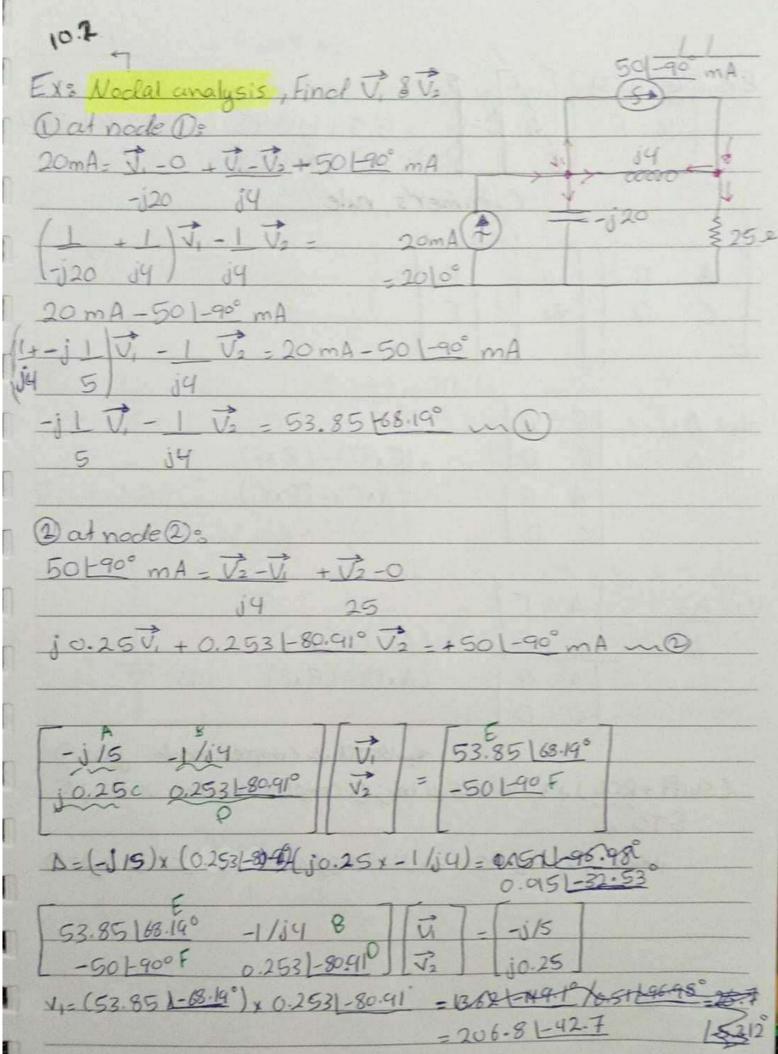
ALADIB net

المضارة

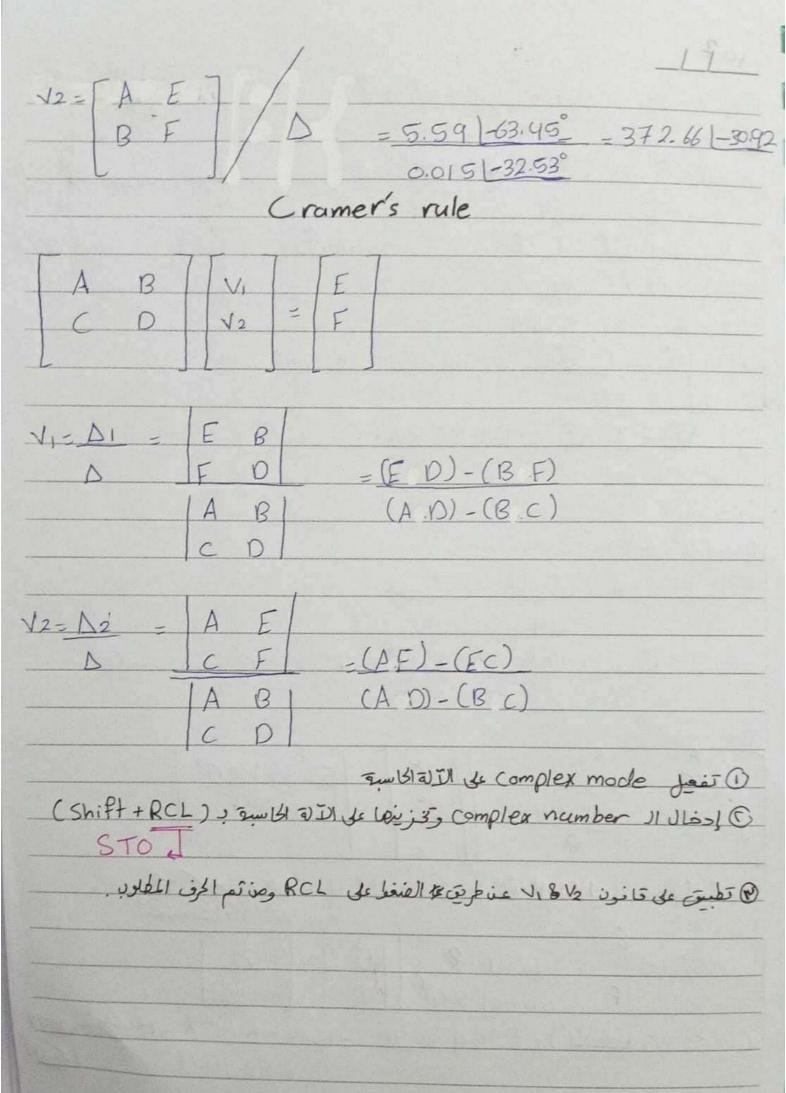
Exe Finel is (+)?

Exe Finel is (+)?

$$Z_1 = Z_2$$
 $Z_1 = Z_2$
 $Z_2 = Z_3$
 $Z_1 + Z_2$
 $Z_2 = Z_3$
 $Z_1 + Z_2$
 $Z_2 = Z_3$
 $Z_3 = Z_3$
 $Z_4 = Z_2$
 $Z_4 = Z_2$
 $Z_5 = Z_4$
 $Z_5 = Z_5 = Z_5$
 $Z_5 = Z_5$
 Z_5

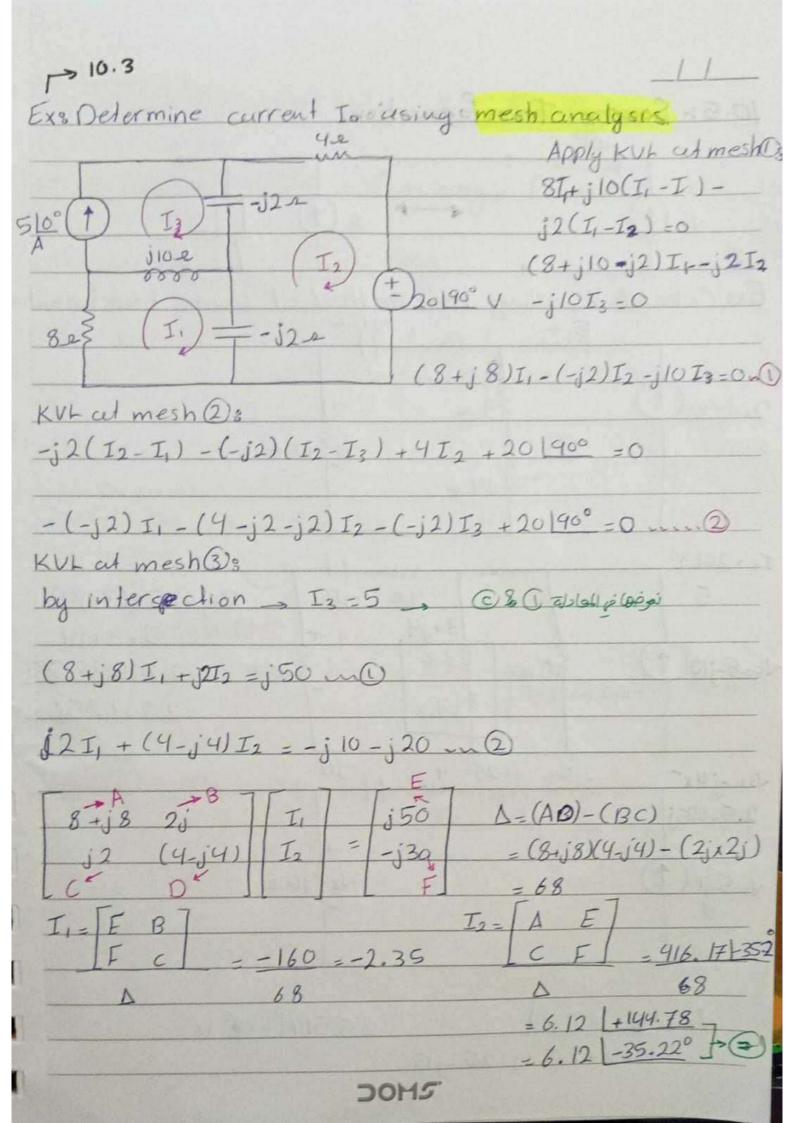

$$\frac{10mF}{20cos(100(+10^{6}))} = \frac{10mF}{15H} = \frac{1}{2} \times \frac{100 \times 15}{1500}$$

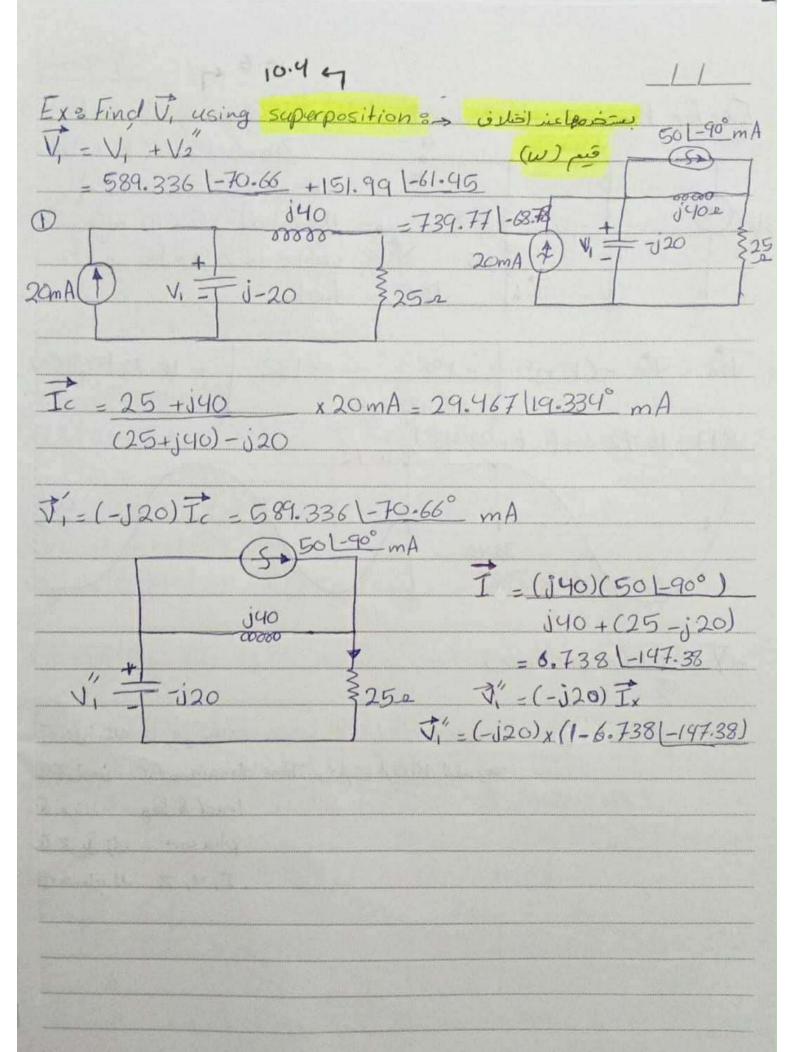
$$\frac{10mF}{20cos(100(+10^{6}))} = \frac{1}{2} \times \frac{1}{2}$$

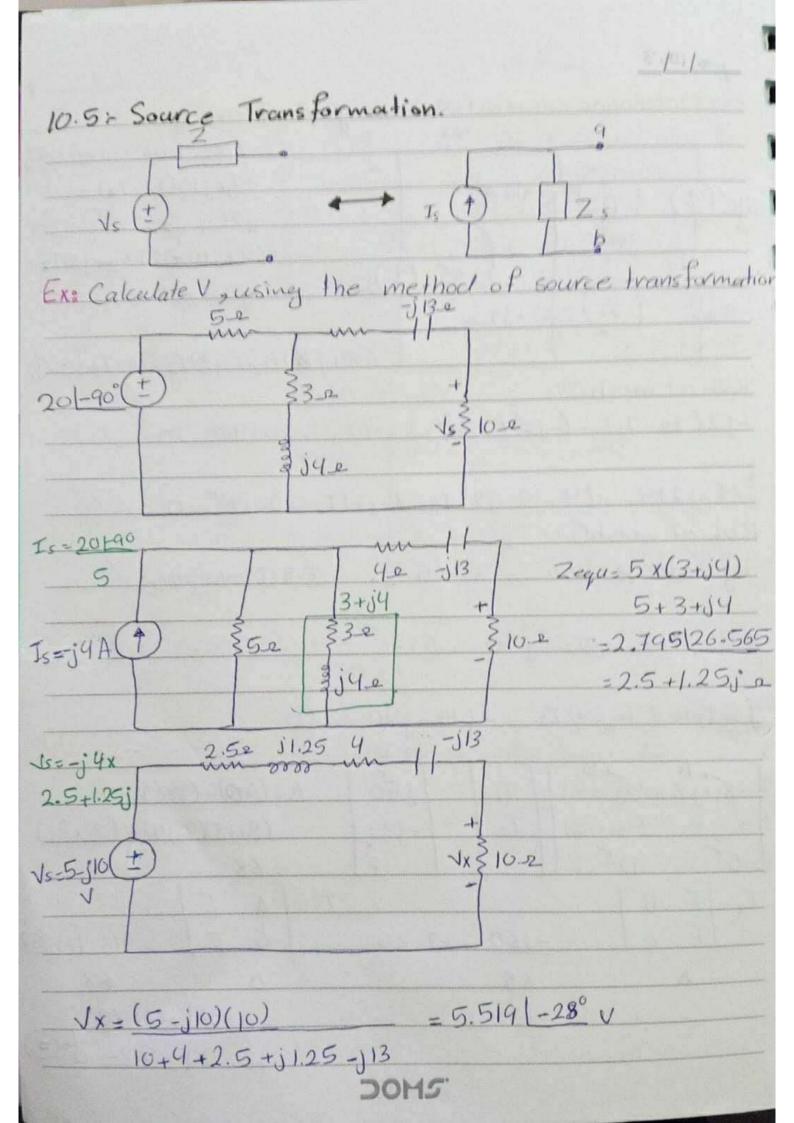

$$Z_{equ} = (-j //j 1500) + 10$$

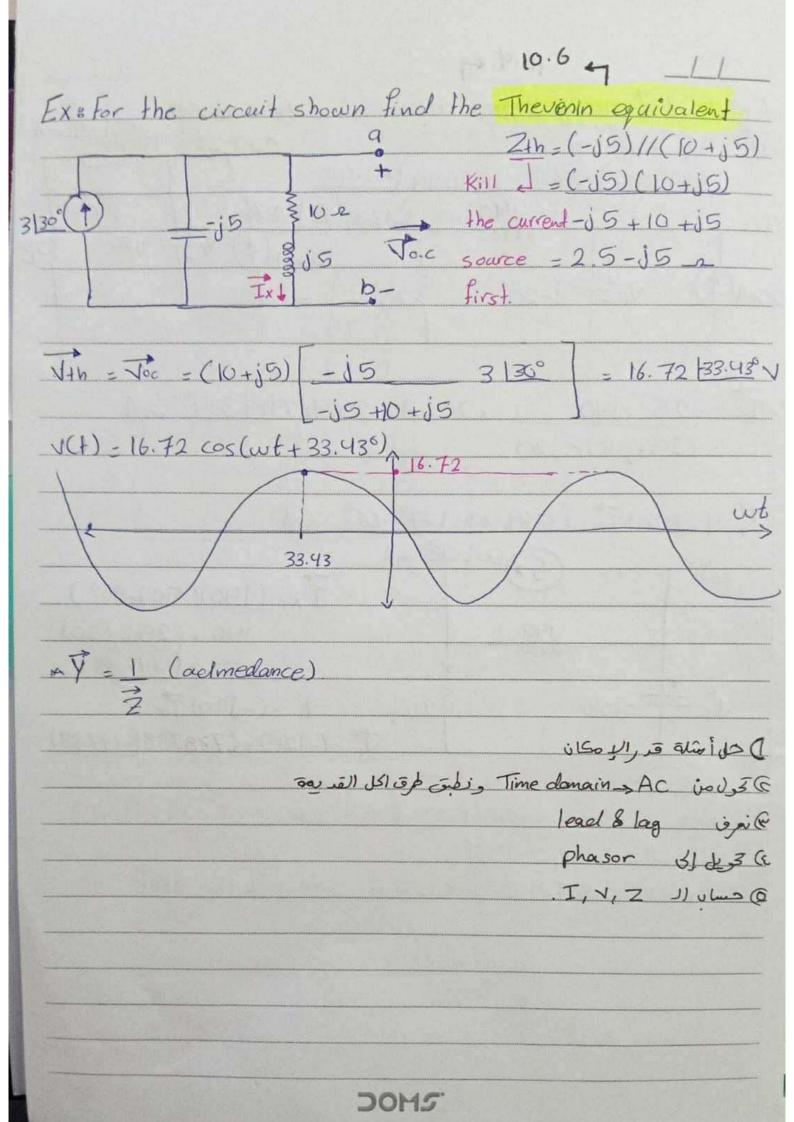
= $(-j)(j1500) + 10$
 $-j+j1500$
= $10-j1$

ALADIB not


الدهارة




DOM5



DOM5

Solve for V_o in the circuit of Fig. 10.9 using mesh analysis.

Example 10.4

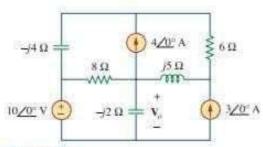


Figure 10.9 For Example 10.4.

Solution:

As shown in Fig. 10.10, meshes 3 and 4 form a supermesh due to the current source between the meshes. For mesh 1, KVL gives

$$-10 + (8 - j2)\mathbf{I}_1 - (-j2)\mathbf{I}_2 - 8\mathbf{I}_3 = 0$$

or

$$(8 - j2)\mathbf{I}_1 + j2\mathbf{I}_2 - 8\mathbf{I}_3 = 10$$
 (10.4.1)

For mesh 2,

$$I_2 = -3$$
 (10.4.2)

For the supermesh,

$$(8 - j4)I_3 - 8I_1 + (6 + j5)I_4 - j5I_2 = 0$$
 (10.4.3)

Due to the current source between meshes 3 and 4, at node A,

$$I_4 = I_3 + 4$$
 (10.4.4)

■ METHOD 1 Instead of solving the above four equations, we reduce them to two by elimination.

Combining Eqs. (10.4.1) and (10.4.2),

$$(8 - j2)I_1 - 8I_2 = 10 + j6$$
 (10.4.5)

Combining Eqs. (10.4.2) to (10.4.4),

$$-8\mathbf{I}_1 + (14+j)\mathbf{I}_3 = -24 - j35$$
 (10.4.6)

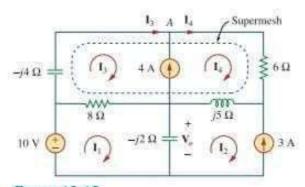


Figure 10.10 Analysis of the circuit in Fig. 10.9.

From Eqs. (10.4.5) and (10.4.6), we obtain the matrix equation

$$\begin{bmatrix} 8 - j2 & -8 \\ -8 & 14 + j \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_3 \end{bmatrix} = \begin{bmatrix} 10 + j6 \\ -24 - j35 \end{bmatrix}$$

We obtain the following determinants

$$\Delta = \begin{vmatrix} 8 - j2 & -8 \\ -8 & 14 + j \end{vmatrix} = 112 + j8 - j28 + 2 - 64 = 50 - j20$$

$$\Delta_1 = \begin{vmatrix} 10 + j6 & -8 \\ -24 - j35 & 14 + j \end{vmatrix} = 140 + j10 + j84 - 6 - 192 - j280$$

$$= -58 - j186$$

Current I_1 is obtained as

$$I_1 = \frac{\Delta_1}{\Delta} = \frac{-58 - j186}{50 - j20} = 3.618 / 274.5^{\circ} A$$

The required voltage V_0 is

$$\mathbf{V}_o = -j2(\mathbf{I}_1 - \mathbf{I}_2) = -j2(3.618/274.5^{\circ} + 3)$$

= -7.2134 - j6.568 = 9.756/222.32° V

METHOD 2 We can use MATLAB to solve Eqs. (10.4.1) to (10.4.4). We first cast the equations as

$$\begin{bmatrix} 8 - j2 & j2 & -8 & 0 \\ 0 & 1 & 0 & 0 \\ -8 & -j5 & 8 - j4 & 6 + j5 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \\ \mathbf{I}_3 \\ \mathbf{I}_4 \end{bmatrix} = \begin{bmatrix} 10 \\ -3 \\ 0 \\ 4 \end{bmatrix}$$
 (10.4.7a)

or

$$AI = B$$

By inverting A, we can obtain I as

$$I = A^{-1}B (10.4.7b)$$

We now apply MATLAB as follows:

as obtained previously.

-7.2138 - 6.5655i

Figure 10.13 For Example 10.6.

Solution:

Since the circuit operates at three different frequencies ($\omega = 0$ for the dc voltage source), one way to obtain a solution is to use superposition, which breaks the problem into single-frequency problems. So we let

$$v_o = v_1 + v_2 + v_3 \tag{10.6.1}$$

423

10.4 Superposition Theorem

where v_1 is due to the 5-V dc voltage source, v_2 is due to the 10 cos 2t V voltage source, and v_3 is due to the 2 sin 5t A current source.

To find v_1 , we set to zero all sources except the 5-V de source. We recall that at steady state, a capacitor is an open circuit to de while an inductor is a short circuit to de. There is an alternative way of looking at this. Since $\omega = 0$, $j\omega L = 0$, $1/j\omega C = \infty$. Either way, the equivalent circuit is as shown in Fig. 10.14(a). By voltage division,

$$-v_1 = \frac{1}{1+4}(5) = 1 \text{ V}$$
 (10.6.2)

To find v_2 , we set to zero both the 5-V source and the 2 sin 5t current source and transform the circuit to the frequency domain.

10 cos 2t
$$\Rightarrow$$
 10/0°, $\omega = 2$ rad/s
2 H \Rightarrow $j\omega L = j4 \Omega$
0.1 F \Rightarrow $\frac{1}{j\omega C} = -j5 \Omega$

The equivalent circuit is now as shown in Fig. 10.14(b). Let

$$Z = -j5 \| 4 = \frac{-j5 \times 4}{4 - j5} = 2.439 - j1.951$$

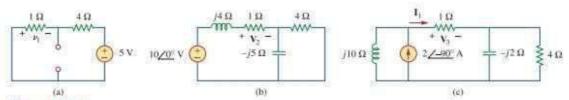


Figure 10.14

Solution of Example 10.6: (a) setting all sources to zero except the 5-V dc source, (b) setting all sources to zero except the ac voltage source, (c) setting all sources to zero except the ac current source.

By voltage division,

$$\mathbf{V}_2 = \frac{1}{1 + j4 + \mathbf{Z}} (10/0^\circ) = \frac{10}{3.439 + j2.049} = 2.498/-30.79^\circ$$

In the time domain,

$$v_2 = 2.498 \cos(2t - 30.79^\circ)$$
 (10.6.3)

To obtain v_3 , we set the voltage sources to zero and transform what is left to the frequency domain.

$$2 \sin 5t$$
 \Rightarrow $2/-90^{\circ}$, $\omega = 5 \text{ rad/s}$
 2 H \Rightarrow $j\omega L = j10 \Omega$

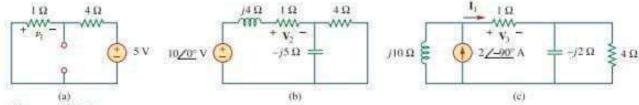


Figure 10.14

Solution of Example 10.6: (a) setting all sources to zero except the 5-V dc source, (b) setting all sources to zero except the ac voltage source, (c) setting all sources to zero except the ac current source.

By voltage division,

$$\mathbf{V}_2 = \frac{1}{1 + j4 + \mathbf{Z}} (10/0^\circ) = \frac{10}{3.439 + j2.049} = 2.498/-30.79^\circ$$

In the time domain,

$$v_2 = 2.498 \cos(2t - 30.79^\circ)$$
 (10.6.3)

To obtain v_3 , we set the voltage sources to zero and transform what is left to the frequency domain.

$$2 \sin 5t$$
 \Rightarrow $2/-90^{\circ}$, $\omega = 5 \text{ rad/s}$
 2 H \Rightarrow $j\omega L = j10 \Omega$
 0.1 F \Rightarrow $\frac{1}{j\omega C} = -j2 \Omega$

424

Chapter 10 Sinusoidal Steady-State Analysis

The equivalent circuit is in Fig. 10.14(c). Let

$$\mathbf{Z}_1 = -j2 \| 4 = \frac{-j2 \times 4}{4 - j2} = 0.8 - j1.6 \Omega$$

By current division,

$$\mathbf{I}_{1} = \frac{j10}{j10 + 1 + \mathbf{Z}_{1}} (2 / -90^{\circ}) \text{ A}$$

$$\mathbf{V}_{3} = \mathbf{I}_{1} \times 1 = \frac{j10}{1.8 + j8.4} (-j2) = 2.328 / -80^{\circ} \text{ V}$$

In the time domain,

$$v_3 = 2.33 \cos(5t - 80^\circ) = 2.33 \sin(5t + 10^\circ) \text{ V}$$
 (10.6.4)

Substituting Eqs. (10.6.2) to (10.6.4) into Eq. (10.6.1), we have

$$v_o(t) = -1 + 2.498 \cos(2t - 30.79^\circ) + 2.33 \sin(5t + 10^\circ) \text{ V}$$

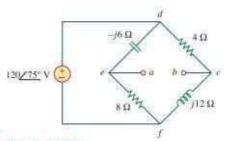


Figure 10.22 For Example 10.8.

10.6 Thevenin and Norton Equivalent Circuits

427

Solution

We find \mathbf{Z}_{Th} by setting the voltage source to zero. As shown in Fig. 10.23(a), the 8- Ω resistance is now in parallel with the -j6 reactance, so that their combination gives

$$Z_1 = -j6 \| 8 = \frac{-j6 \times 8}{8 - j6} = 2.88 - j3.84 \Omega$$

Similarly, the 4- Ω resistance is in parallel with the j12 reactance, and their combination gives

$$\mathbf{Z}_2 = 4 \parallel j12 = \frac{j12 \times 4}{4 + j12} = 3.6 + j1.2 \Omega$$

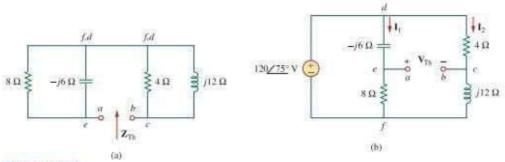
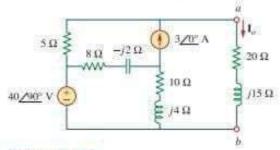


Figure 10.23 Solution of the circuit in Fig. 10.22: (a) finding $Z_{\rm Thr}$ (b) finding $V_{\rm Thr}$

The Thevenin impedance is the series combination of \mathbf{Z}_1 and \mathbf{Z}_2 ; that is,

$$\mathbf{Z}_{Th} = \mathbf{Z}_1 + \mathbf{Z}_2 = 6.48 - j2.64 \Omega$$

To find V_{Tb} , consider the circuit in Fig. 10.23(b). Currents I_1 and I_2 are obtained as


$$I_1 = \frac{120/75^\circ}{8 - i6} A$$
, $I_2 = \frac{120/75^\circ}{4 + i12} A$

Applying KVL around loop bedeab in Fig. 10.23(b) gives

$$V_{Th} - 4I_2 + (-j6)I_1 = 0$$

or

$$\mathbf{V}_{Th} = 4\mathbf{I}_2 + j6\mathbf{I}_1 = \frac{480/75^{\circ}}{4 + j12} + \frac{720/75^{\circ} + 90^{\circ}}{8 - j6}$$
$$= 37.95/3.43^{\circ} + 72/201.87^{\circ}$$
$$= -28.936 - j24.55 = 37.95/220.31^{\circ} \text{ V}$$

For Example 10.10.

Solution:

Our first objective is to find the Norton equivalent at terminals a-b. \mathbb{Z}_N is found in the same way as \mathbb{Z}_{Th} . We set the sources to zero as shown in Fig. 10.29(a). As evident from the figure, the (8 - j2) and (10 + j4) impedances are short-circuited, so that

$$Z_N = 5 \Omega$$

To get I_N , we short-circuit terminals a-b as in Fig. 10.29(b) and apply mesh analysis. Notice that meshes 2 and 3 form a supermesh because of the current source linking them. For mesh 1,

$$-j40 + (18 + j2)\mathbf{I}_1 - (8 - j2)\mathbf{I}_2 - (10 + j4)\mathbf{I}_3 = 0$$
 (10.10.1)

430

Chapter 10 Sinusoidal Steady-State Analysis

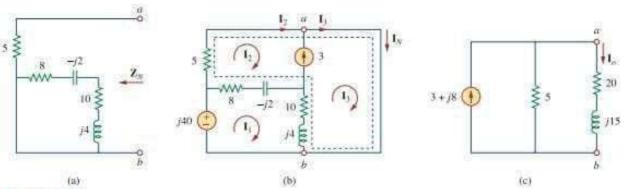


Figure 10.29

Solution of the circuit in Fig. 10.28; (a) finding \mathbf{Z}_{N} , (b) finding \mathbf{V}_{N} , (c) calculating \mathbf{I}_{m}

For the supermesh,

$$(13 - j2)I_2 + (10 + j4)I_3 - (18 + j2)I_1 = 0$$
 (10.10.2)

At node a, due to the current source between meshes 2 and 3,

$$I_3 = I_2 + 3$$
 (10.10.3)

Adding Eqs. (10.10.1) and (10.10.2) gives

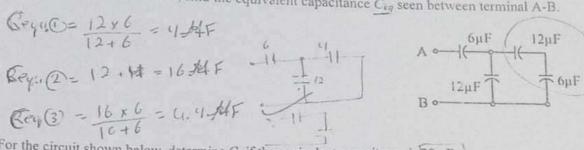
$$-j40 + 5I_2 = 0$$
 \Rightarrow $I_2 = j8$

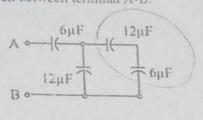
From Eq. (10.10.3),

$$I_3 = I_2 + 3 = 3 + j8$$

The Norton current is

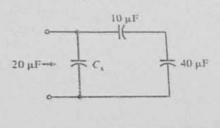
$$I_N = I_3 = (3 + j8) A$$

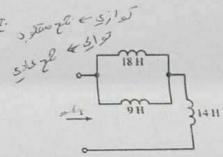

Figure 10.29(c) shows the Norton equivalent circuit along with the impedance at terminals a-b. By current division,


$$I_n = \frac{5}{5 + 20 + i15} I_N = \frac{3 + i8}{5 + i3} = 1.465 / 38.48^{\circ} A$$

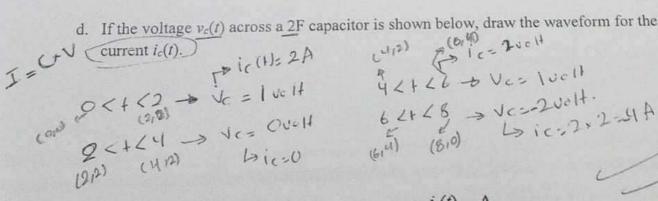
Question #3 (7 points)

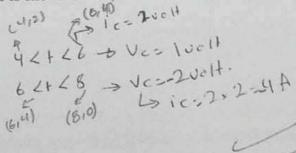
الم معلاد م دارد د

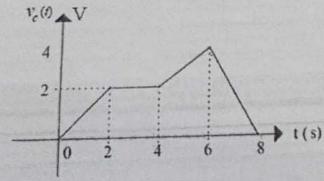

a. For the circuit shown below, find the equivalent capacitance Ceq seen between terminal A-B.

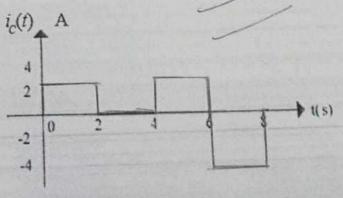


b. For the circuit shown below, determine C_x if the equivalent capacitance is $[20 \, \mu F]$.

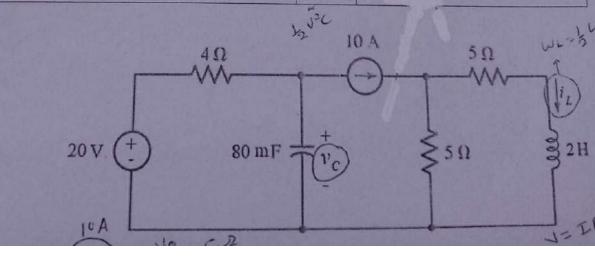

$$Ceq...(C) = \frac{10 \times 110}{10 + 110} = 3MF$$
 $20 = 8 + 0 \times 10$
 $0 = 12MF$

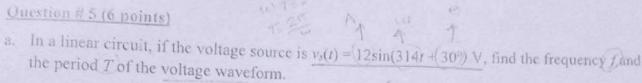



c. For the circuit shown below, find the equivalent inductance L_T .



d. If the voltage $v_c(t)$ across a 2F capacitor is shown below, draw the waveform for the capacitor




For the circuit shown below, the sources have been connected for very long time. Find under this condition:

a.	the current through the inductor.	$I_L =$	A
b.	the voltage across the capacitor.	$v_C =$	V
c.	the energy stored in the inductor.	$W_L =$	J
d.	the energy stored in the capacitor.	$W_C =$	J

42

Question # 5 (6 points)

$$\omega = 2\pi f$$
 $314 = 2\pi f$
 $\Rightarrow f = 314 = 49.97$
 $\Rightarrow f = 50.025$

b. Write the equation of the sinusoidal current waveform i(t) shown below with the phase angle θ expressed in degrees.

Obtain the sinusoidal waveforms corresponding to each of the following phasors:

i.
$$\overline{V_1} = 60 \angle 15^{\circ} V$$
, $\omega = 10 \text{ rad/s}$

Sin $(10t - 75)$
 $(+) = 60 \le \sin(10t - 75)$

ii.
$$\overline{V}_2 = 6 + j8$$
 V, $\omega = 40$ rad/s

$$V = \sqrt{6^2 + 8^2} = 10$$
 $V(t) = 10006(40+453.1)$ $0 = 10006(40+453.1)$

 $\rho(\alpha t + 60^\circ)$ V and $\rho(t) = 60\cos(\alpha t - 10^\circ)$ determine the phase angle θ

Chapter 11

CH(11) : AC POWER Analysis

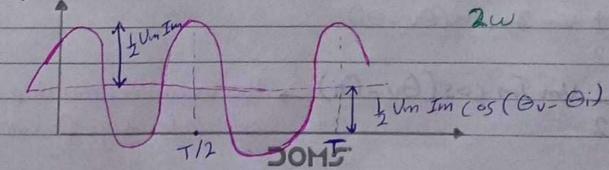
11.2: Instantanous and average Power

* The instantanous Power: P(+) . instantanous Power : P(+)

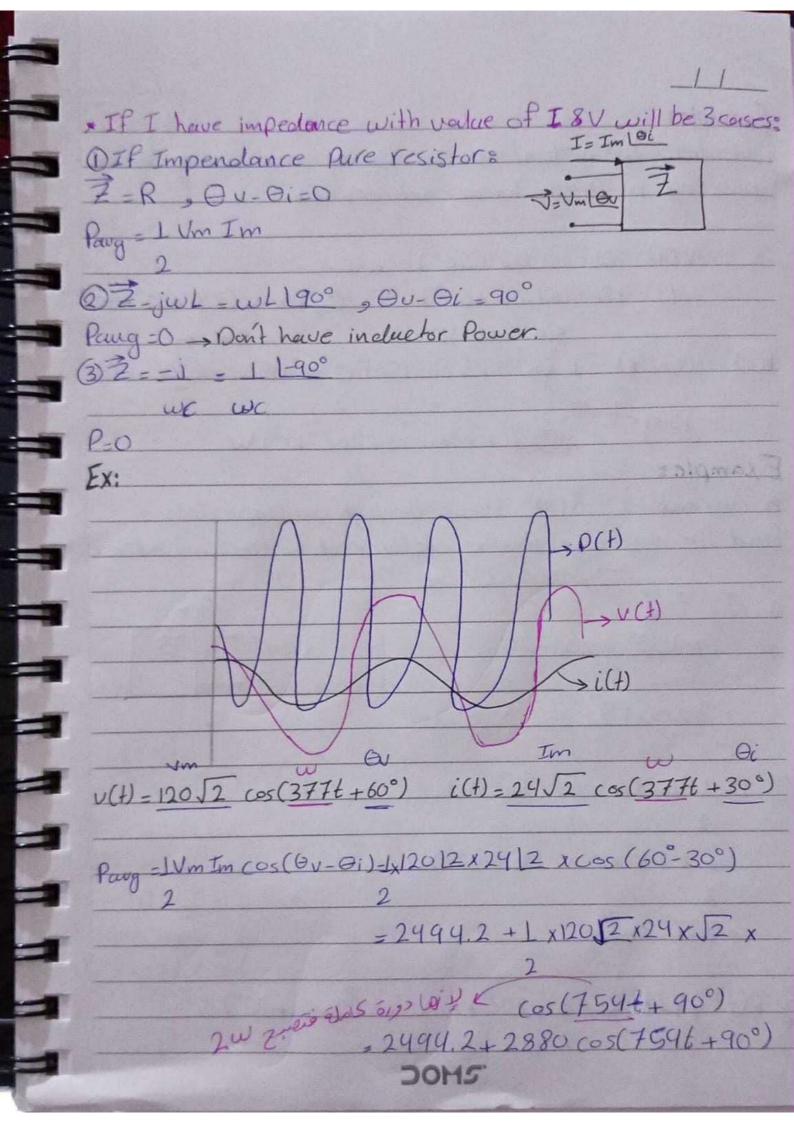
P(t) = v(t) i(t) = Vm Im cos(wt + Ov) cos (wt + Oi)

= 1 Vm Im cos(Ou-Oi) + 1 Vm Im cos (Out+Ou+Q)

 $i(t) = Im \cos(\omega t + \Theta t)$ $v(t) = Vm \cos(\omega t + \Theta u)$ $sos(A) \cos(B) = 1/2 \cos(A - B) + 1/2 \cos(A + 13) - o$ i(t) r(t) r(t)


1 ½ Vm Im (05 (60-0i) }

ون المن والماني الله المعالم المعالم


* Average Powers

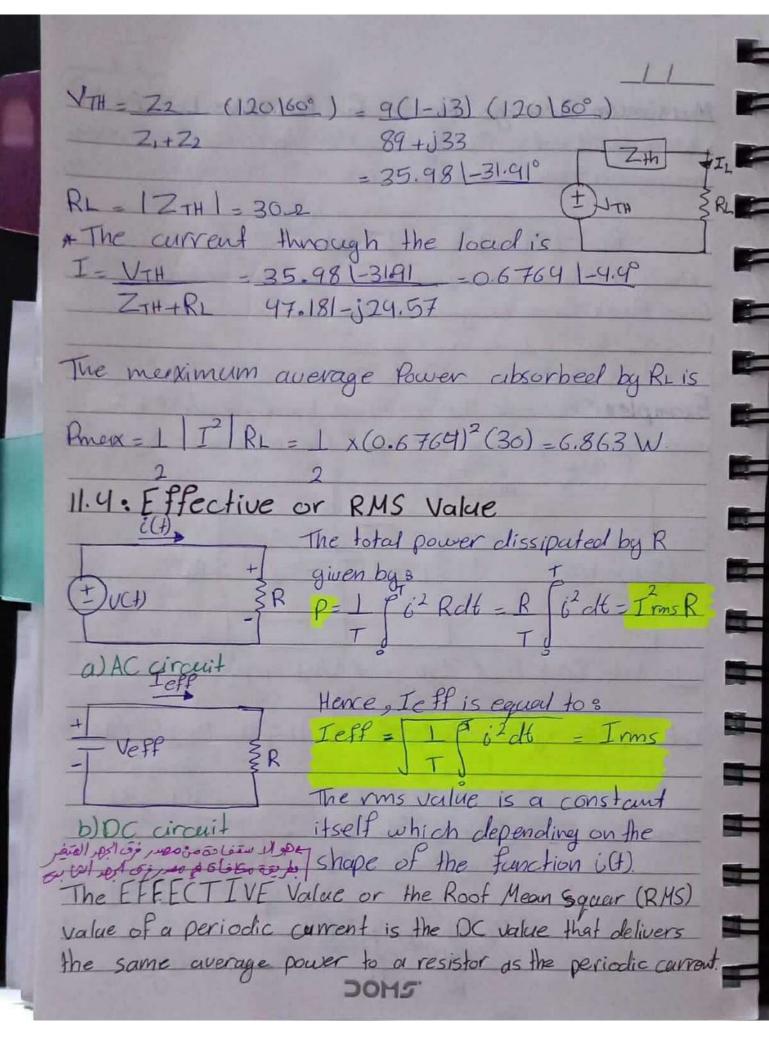
P=1 P (Xt) dt = 1 Vm Im (05 (OV - Oi)

T 2

NOTE: AND ARRAMAN STON
ID is not time dependent
D. How A. Di it is a purely resistive local couse.
3) When Ov-Oi = 790°, it is a Rively reactive local case
The Promeens that the circuit absorbs no average Pavar
SD PEO VILLEUMS 1 Har THE C.
The average Power P is the average of the instantanous
ne average rover in the
power over one Period. (t) = r(t)i(t) = International Power
P= IF p(t) dt - Average Power.
~(+)=Vm (05(wt+6v) i(+)=Im cos(wt+6i)
- 1 Pacific I Paris Coc (Qui-Qi)dt
P= I \ P(t) dt = I \ \ I \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1 [] Vm Im cos(2wt+Qv+Oi)dt
T) D VM IM CO CACO I
P= 1 Vm Im cos(&v-Oi)1 dt +1 Vm Im 1 fees (2wt+Ov+Oi), 2 T J Integral of Joth sinusoidal=0
P= 1 Vm lm Cos(EV-61) I at +1 on Its Trategues of Jots
= 1 gringspidal=0
5171030100300
= 1 Vm Im cos(Ov-Oi)
P = 1 Vm Im cos (θν - Θi) The main relationship to calculate Avg. Power 2 DOM5
P = I Vm Im (05 (OV -OI) > INE WORLD VELLE OF THE
2 Calculate Buy. Power
כחטכ

Example & Calculate the instantaneous Power and averge Power absorbed by Passive linear network if: ~(+)=80 cos(10t+20°) who 305 i(t) = 15 sin (10t +60°) (05 31, 15 cos (10t +60°-90°) sin=cos-90 2w 4 P(t)=u(t)i(t)=1 x80 x15 cos (50)+1 x80x15 x cos (20t-10°) Pavey = 385.7 + 600 cos (20t-10°) W Examples A current I=10130° flows through an impedance Find the average Power delivered to the impedence -10130° x201-22° = 200 18° 2) P=L Um Im cos (Ou-Oi)

F


 $= 1 \times 200 \times 10 \times (05(8-30))$ = 927.2W

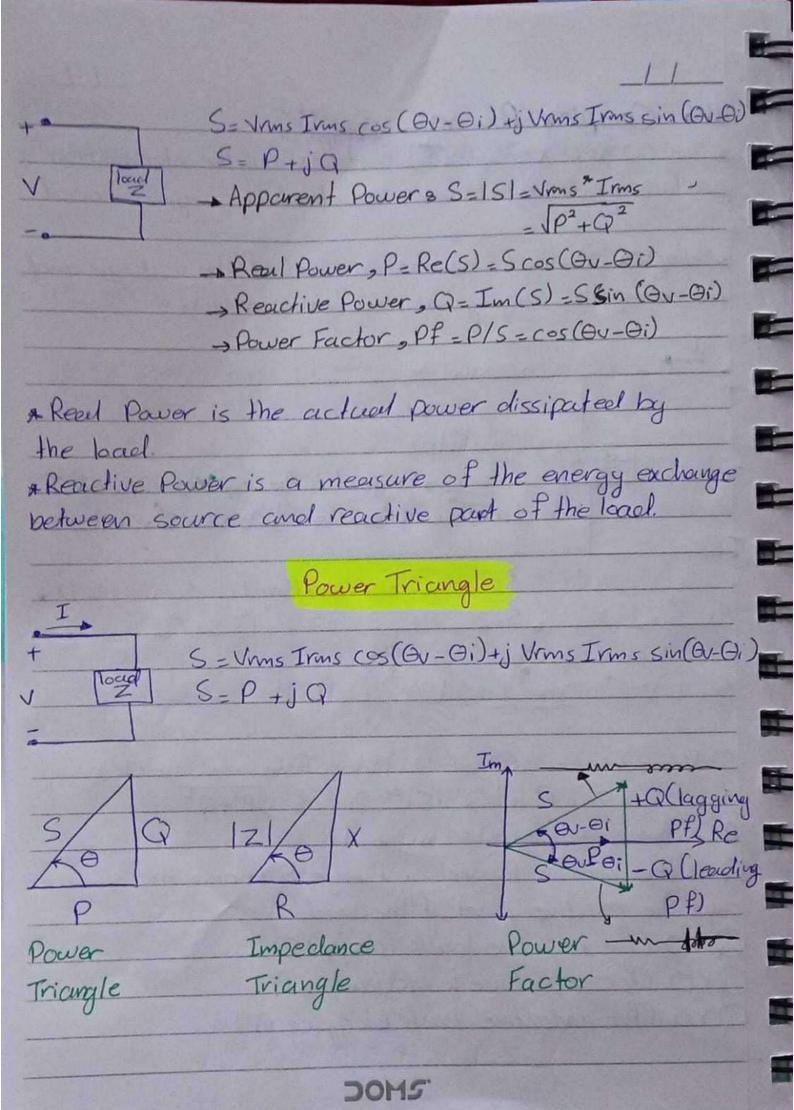
(3) P(+) = 927 .2 + 1 x 200 x 10 x c es (2wt + 38°)

Example: Fine	the aver	rage ab	sorbel b	by resis	tor and
inductor. Finel	the avera	ge power	resistor	S I =	8145
# 81.45°V	TR	= I = 2.5	53 26.57	0 }	3+1
= (±)8145°V &	DIR VR	=3I = 7.5	59(26.5)	53)(75	9)=9.6W
	PR:	2 2	2		
@ For the in	ductor g I	1=2.53	(26.57°		
	11	-= \ 4			
		= 5	2.53 [116	.51	-0111
	Pı	= 1 (2.	53) Co.	SC10)	_0
3 The aver	age Power	supplie	ed is s		
$\rho = 1(8)(2$,53) cos(c	15 - 26.	.57) =		
Example: Ca each of the	ladate the five elem	e avera	the cir	ver at	iven
			08800		
40v (+)	(I_i)	T-120	(J_2)	=) j201)/
For mesho					
-40+8I,	+-j2(I,-	I2)=0		150/60	
-40+(8-1	2) I, + (-j	2) 12 =0)		
((8-j2) Ii+	$(-j2)I_2 =$	40)%	2	an V	
(4-i) I, +	(-j) I2 = 1	20			
		MOC	5		

Ps=-1 (20)(13.6) (05(90°-17.11°) =-40W :01,000
For the resistors
I=11,1=5 V=8/1,1=40volt
P= 1 (40)(5) = 100 W
2
A The average Power absorbed by the incluetor and
corpacitor is zero watts.
11.3 - Maximum Average Power Transfer.
ZTH=RTH+JXTH MRL=RTH
Linear ZL=RL+jXL xXL=-XTH
circuit 121 The maximum average power
can be tremsferred to the load if
a) Circuit with a load
XL = XTH and RL=RTH
Pmax= IVTHI2
(±) ZL 8RTH
The local is Purely
b) Thevenin Equivalent circuit. real, then RL = JRTH+XTH
-conject = 12TH
ZL = RTH - jXTH = ZTH

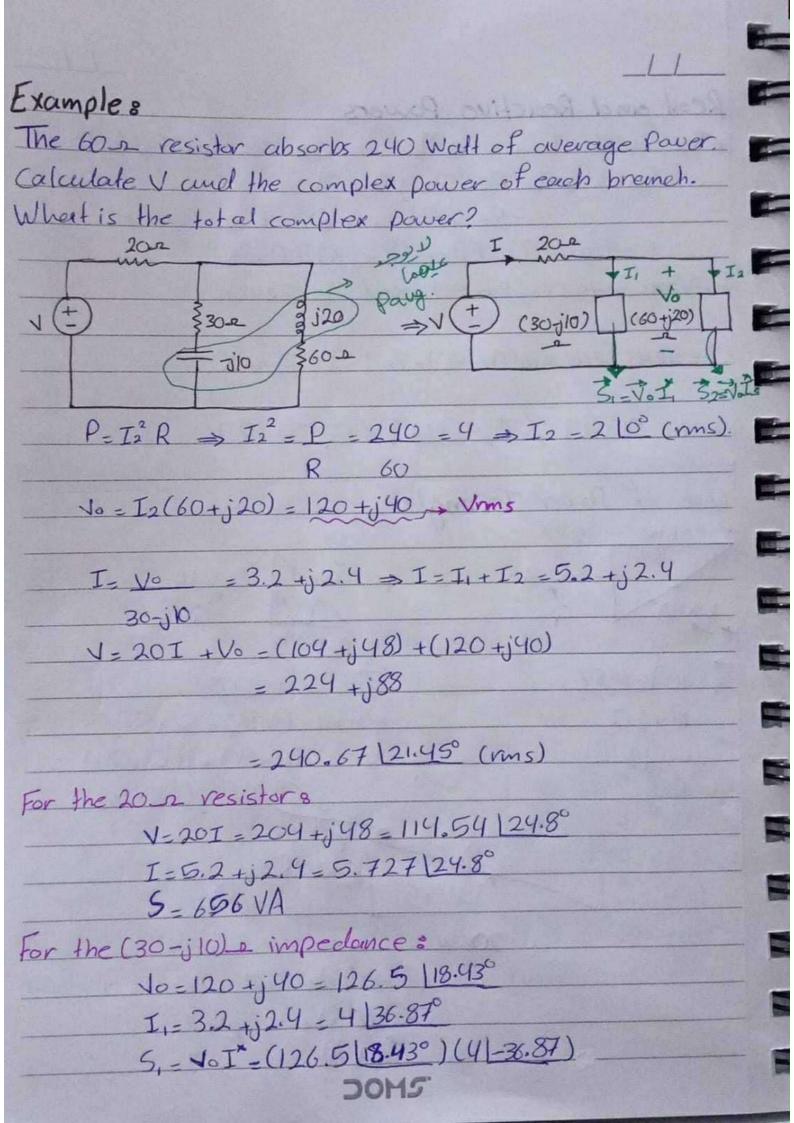
Example: For the circuit shown below, find the load impedance ZI that absorbs the maximum average power. Calculate the maximum average fower. 352 (1)2A 38e 1) ZTH = ZL (We must kill all source and remove ZL) 352 - ZIH 382 ZTH= 5 11 (-j4+10j+8) = 5 x (8+j6) = 3.415+j0.7317 5+8+16 j10 85 - series -jy 88 -series ESE YH By current division > I = 8-14 8-14+110+5 VTH = 5I = (2)(5)(8-14) = 6.25 (-51.340 ZL=ZTH=3.415-j0.73172 XL Pries = [UTH]2 = (6.25)2 = 1.429 W (8)(3,415) DOM5

Example: Find the RMS value of the current unvolum Calculate the average power if the current is applied to a 9-e resistor. (4+)2 dt + (8-46)2 dt

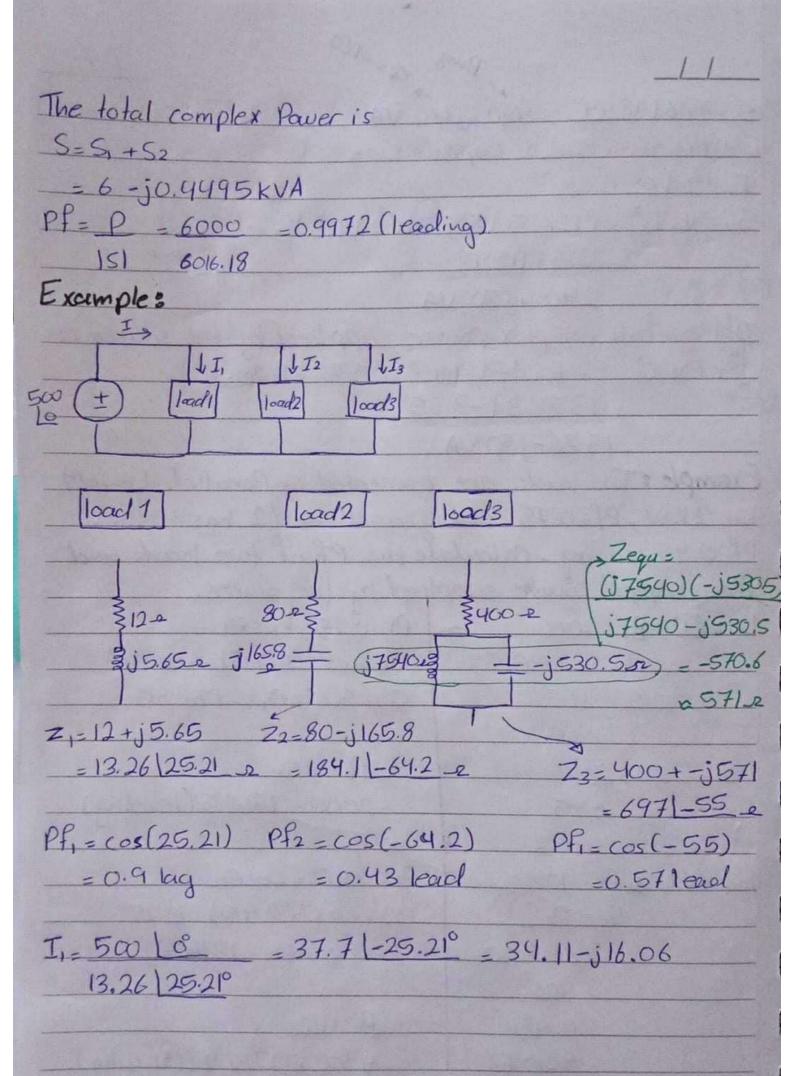

Example: Find the RMS value of the full-wave rectified sine wave. Calculate the average Power dissipated in a 6.2 resistor s V(t) his cis Value of beak=80 @ اقتران Sin 8sin(w6) @ = 8 sin(2TT t/2TT) Texas Merord 11 لاكمال دورة كاملة T= T, U(+)= 8 sin(t), O < t < T = 8 sin (+) VERF = 1 [V2 dt = 1 (8 sin(+))2 dt 1 [1-cos(2t)] of = 32 Veff = 5.657V P = Veft = 32 = 5.333W V(+) = Vm cos(w++++++) 7 = Vm LOV [V] Vrms - Um [Vrms]

20H5

11.5 & Apparent Po	wer omel Power I	Factor.
- Apparent Power ,	is the product of	the r.m.s values of
voltage and curr	enf.	
It is measured in	n volt -amperes or	VA
P=Vms Im	AS COS(AU-Ai) = SCO	15 (OU-GI)
	Apparent Paver J des Ileeb	L, P, F
Purely resistive	Ov-01-0	P/S=1,all power
load (R)	PF=1	are consumed
Purely reactive	Qu-01=790	P=0 , no real power
load (Lorc)	PF=O EL OC	consumption
Resistive and	0v-0i>0	Lagging inductive load
reactive load	0v -0; <0	leading - capacitive
(Rand L/C)		loael
	1-	
(C) 1 Vm Tu 505(cos(Qu-Qi) > [W]
1)1-1 Vm 1m (03 ()	50 - C/7 2 VKm3 1 Km3	
@PF=P = cos CG	ı-⊖i)	
5		
3 S = 1 Vm Im = V	Rms IRms [VA]	
2		
C. Sim Since		


Examples Calculate the power factor seen by the source
and the average Power supplied by the source
and the average power supplied by the source
=701° X12
(+) 40 10° \$142 = 56.56 VOH.
(+) 40 10° 3142 = 56.56 VOIT.
The Bearing of the Control of the Co
The total impedance as seen by the source is s
Z=10+141118-16)]=10+(14)(8-16) = Z=12.64(20.02
8-j6+j4 R L
* The Power Factor
PF = cos(20.62°) = 0.936 (tagging) -> load/lag 11 = 1200 poo
بالامتحان 000
Irms = Vrms = 4010° = 3.152 \-20.62
Z 12.69\20.62°
* The average Paver supplied by the source is equal
to the power absorbed by the local.
P- I'rms R = (3.152)2(11.88) = 118W
or
P= Vrms Irms R= (40)(3,152)(0.936)=118W

11.6: Complex Power (5) contains all the information pertaining to the Power absorbed by a given local.
11.6: Complex Power poul app.)
*The COMPLEX Hower (S) Consums all the informed or
pertaining to the Power absorbed by a given local
Carl Plant and
*Complex power(S) is the product of the voltage and
*Complex power(s) is the proclued of the voltage and the complex conjugate of the currents
V=VmlQV
$I = Im \Theta $
V Load conject is the oppiste sign of I. LVII - Vrms Irms (Qu-Qi I = Im 1-Qi
1 LVII = Vrms Irms (Ou-Oi I = Im (-Oi
8 complex favor) is as lamel should +
Ex. 3=2/30° S=2, P.F= cos (30), P=SxP.F
S = 1 V I = Vrms I rms (Ou-Oi
2
S=Vrms Irms cos(Qu-Qi)+jVrms Irms sin(Qu-Qi)
S=P+JQ=S Q-0i,S=JP2+Q2
Ps is the average Paver in watts
Quis the reactive Power exchange between the source
and the reactive part of the local.
Q=0 (for resistive loads (unity PF)).
O = O (for resistive loads (leading OF)
Q<0 (for capacitive loads (leading PF).
() O (for inductive loads Clagging PF).
DOM5



		_
Real and Reactive Pour	vers	
*The conit of Q is volt -	ampère reactive (VAR)	
S=P+10=Re(S)+1	Im (S)	
= Read Pou	ver + Reactive Power	
S=IRMSZ=IRMSC	R+jX)=P+jQ	
P=VRMSIRMS COSCOU-Gi)=R	le 159 = TRMSK	
Q=VRHS IRMS Sin(OV-Qi)=I	Im TSJ = IRMS X	
Unit: PEW] /3, SEVA	1/QCVAR]	
Use of Power Triangle P→8KW -36.87	S	
	20KVA 16 KVAR	
-6KVAR	+ 20KVA/ 16 KVAR	
IOKVA Q	P ₂ 12 KW	
\$ = 10\-36.87	32 = 20 \ 53.13°	
I = P + JQ	# Stotal = P+jQ = S1 + S2	
	=(P1+P2)+j(Q+Q2	.)
leading	= (8+12) +j(-K+16)	
	7031	
22.36KVA	6 LOKVAR	
26.569		
20KW	0 0 1	
	Paver(W) & Cill 5,45	
	Q(NAR) = del	

3 (VA) = JOH5


```
Paved Q=160
    5, = 506 (-18.44° = 480 - 160 VA
    For the (60+j20) 2 impedences
    S2= V. I2" = (126.5 (18.43°)(21-0°)
              = 253 (18.43°
              = 240 +j80 VA
    The overall complex power supplied by the source is
     ST= VI = (240.67 \21.45°) (5,727 \-24.8°)
             = 1378.31-3.350
             =1376-j80 VA
    Exemple & Two loads are connected in Parallel. LocalT
    has 2KW, Pf=0.75 leading and Load 2 has 4KW,
    Pf. 0.95 lagging. Calculate the Pf of two loads and
     the complex power supplied by the source.
                            PF=0.75=cose1
    Load(1)=> P1 - 2000
                             0=(05-(0.75)=-41.41°
             PI= SICOSOI
                             Q1= S, sin0, =- 176.85
               (ost)
                             S,= P, + J Q
                               = 2000-j176.85 (leading)
               0.75
             -2666.67
    load (2) > B = 4000
                             PF=0.95 = COSO2
                             02=(05'(0.95)=18.19°
              S2= P2
                             Q2=S5in O2=1314.4
                 (0502
                - 4000
                             52= P2 + UQ2
                 0.95
                               =4000+j1314.4 (lagging)
                =4210.53
-11
```


11

 $I_{2}=50010^{\circ}$ = 2.72\64.2° = 1.18+j2.45 184.11-64.2° T. 50010° = 0.72155° = 0.41+j0.59

I3=50010° = 0.72\55° = 0.41+j0.59

I-I, +I2 + I3 = 35.7-j13.02 = 381-20° A

Combined Pf = (05(20) = 0.94 lag

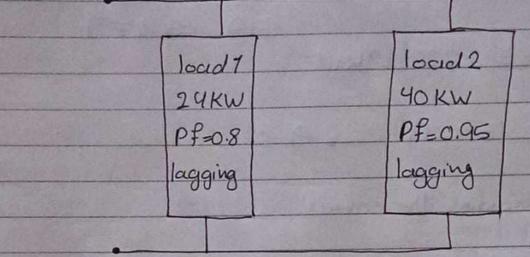
S=VI"=500 x 37.7 \25.21° = 18850 \25.21° = 17055+j8029

S2=ÛT2=500x2.721-64.2° - 13601-64.2° = 592-j1224VA

53= VI3 = 500 x 0.72 L-55° = 360 L-55° = 207 - j 295 VA

S=S1 + S2 +S3 = 17854-j6510 = 190001-20° VA

Checks S- UT = 500-381-20 = 190001-20° VA


Power Factor Correction Power factor correction is the process of increasing the Power factor without altering the voltage or current to the original load. IL real power (P) Pi-Sicos(O) Q=S, sin() P.F-COS(O). reactive Paver (Q). = P(tano, -tano) 1/wc = WCV2ms Q2=Q1+Qc C=Qc=P(tan-1-tan-02) Q25Q1 * الفكرة هي إلا الد قيمة) لترفع قيمة الـ Q وتنزل قيمة الزاولة. . الم الم الم الم الم الم الم الم الم

Examples Find the value of the capacitance needed
to correct a load of 140 KVAR at 0.85 lagging Pf to
carity Pf. The load is supplied by 110 volt (rms), 60 Hz line
Pf=0.85 - cos 0 - 0=31.790
Q=5 sine = 140 = 265.8 KVA
Sm0 sw(31.79°)
P=Scos0 = 225.93KW
*For Pf= 1=cos & A=0°
Sixe Premains the sames
000000000000000000000000000000000000000
P-R-Scosa - S-R = 225.93
Q1=S, Sin(0) = 0
The different between the new Q and the obl Q is Oc.
Gr=140 KVAR = WCV2ms
UCE TO AUTHE COUNTY
C-140 x103 = 30.69mf
$C = 140 \times 10^3 = 30.69 \text{ mF}.$ $(217)(60)(110)^2$

Examples A 120-Urms, 60 HZ source supplies two locals connected in parallel.

a) find the power Factor of the Parallel combination. b) culculate the value of the capacitance connected

in Parallel that will reise the Power factor to unity.

a) 0,-(05-1(0.8)=36.87°, S,=P=24=30KUA

1

Q=5 sin(0)= (30)(0.6)=18 KVAR 3, = 24+j18 KVA

02 = cos-1(0,95)=18.190, Sz=P1 = 40 = 42.105KVA

(os6, 0.95

Q2=S2 sin(B) = 13.144 KVAR, \$2=40+13.144 KVA

S-S,+S2 = 64+131.144 KVA 0= tan -1 (31.144/64) = 25.95° Pf= cos0 = 0.8992(bg) b) 02=25,95°, 01=0° Qc=P[tanO2-tanQ]=64[tan(25.95°)-0]-31.144KVAR C=Qc = 31.144 = 5,79mF

W Vrms (211) (60) (1202)

Problem (1): The heating element in a soldering iron has a resistance of 30 p. Finel the average power dissipated in the soldering iron it it is connected to a voltage source of 117 Vrms.

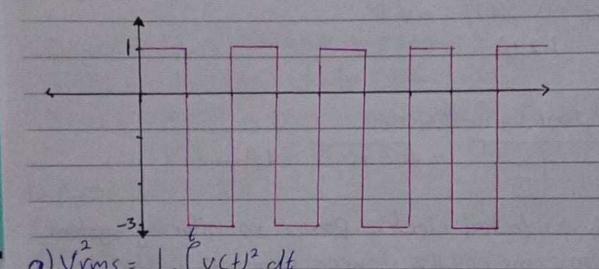
Pargathors Vrms P= Vrms = (117)² Impartment 11 39 A R 30 18 - 456.3W Problem(2). A current of 4A flows when a neon light advertisment is supplied a 110 Vrms power system. The current lay the Voltage by 60°. Find the power dissipated by the circuitand the power factor. Irms = Im = 4 = 2.82 or Vm = Vrms xJ2 = 100xJ2 P=InJames cos (Ou-Oi) = 2.82 x 110 x cos (-60) = 155.1W P.F= (05 (60)=0.5 9P=1 Vm Im (05 (QU-01)=155.50W Problem (3): A current of 10 Arms Flow when a single-phoise circuit is placed across a 220-Vrms source. The current lags the voltage by 60°. Find the power dissipated by the circuit and the Power Factor. P = Vrms Irms cos (-60)

P.F = (05(-60) = 0.5

= 10 x 220xcos(-60)

Problem: A current source i(t) is connec	ted to a
50-2 resistor. Find the average Power del	ivered to the
resistor that i(t) is:	
2.5 cos(506) A. Irms = Im 1/2	
6=510° , Paug = ImsxR=(5/12)x90625W	The same
0.5 cos (5t - 45)A).	
i=51-45 , Paug=(51-45/V2)2x50=629	5 1-90 AW
C.5 cos (50t) - 2 cos (506 - 0.873)	
510 - 21-0.873 - 310.582	12 (22 2 . 7 6
Irms = 3 0.582 = 2.12 10.582 , Paug -(2.12	10.982 X50
V2 = 225	, [1-169]
D. 5 cos (50t) - 2 A.	
$OC \rightarrow -2A$	
AC >5/0°	. (20) . (20)
Protal = PAC + PDC	- 02511
$= (-2)^2 \times 50 + (5/\sqrt{2})^2 \times 50 = 200 + 625$	0= 019W
Problem Find the rms value of each of the	18 78110WIVY 8
a. i(t) = cos(450t) + 2 cos(450t) A.	
= 3 cos (450t)	
Irms = 3/1/2 = 2.12A	
b.c(t)=cos(5t)+sin(5t)	
= cos (5t) + cos (5t - 90)	
= 110° + 11-90°	
- \(\frac{1}{2}\) \(\frac{1}{2	
Irms= \(\frac{1}{2} \left -456 /\sqrt{2} = 11-45	
DOM5	

E

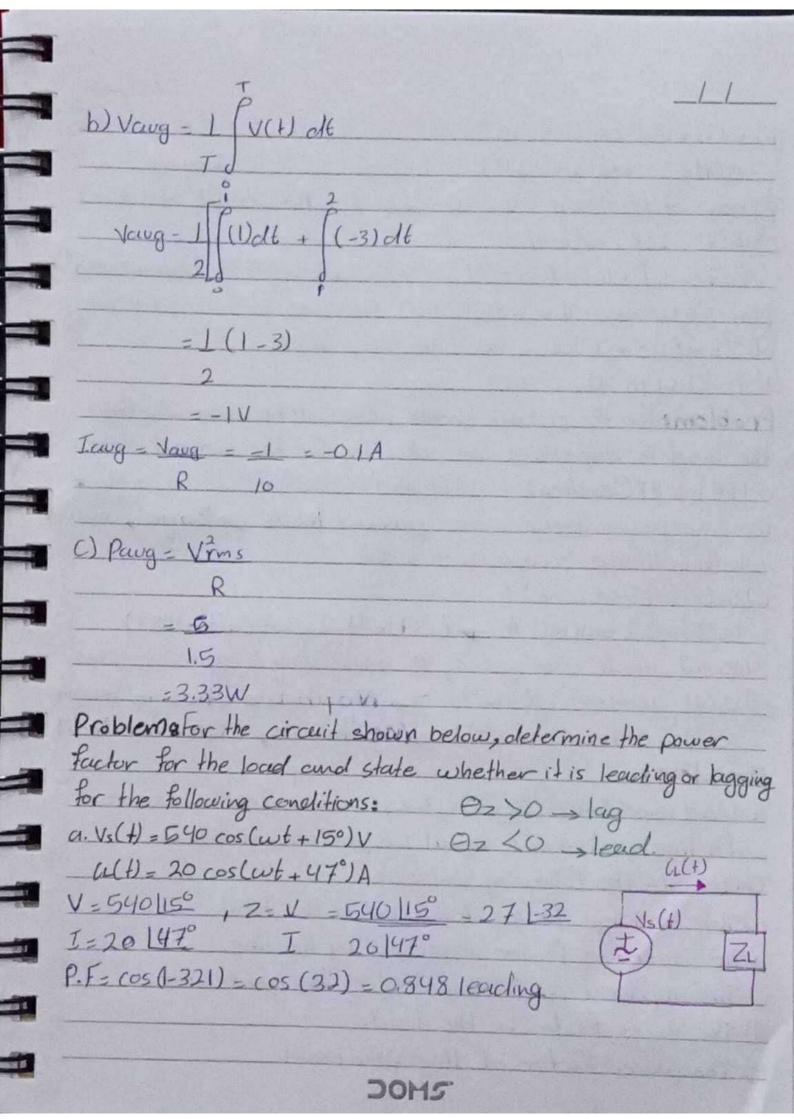

C.i(t) = cos(450t)+2 d. i(t) = cos(5t) + cos(5t + T/3). = 1100 +1160° = 1+0.5+10.866 = 1.5 + 10.866 value: \((1.5)^2 + (0.866)^2 = \(\) 3 Irms= J3 = 1.22A ei(+) = (05 (200t) + cos(400t) Problem & A residential electric Power monitoring system routed for 120 v rms , 60 Hz , source registers power consumption of 1.2 KW, with P.F = 0.8. Findi-1) Irms =? 2) The phase angle 3) The system impedence 4) The system resistance. QIMS = P (2)0= cost (0.8)=38.87° VXCOSA Sp P = 1,2 = 1.5 KVA - 1200 Q=5 sin0=1,5 xsin(38.87°)=0.9413 KVAR 120 x0.8 12.5 Arms 5=12+10.9413 3 121= V/I=120/12.5=9.62 (4) R= 121 xcos0 = 9.6 x0.8 = 7.68 x

Problem #7.8:

Given the waveform of a voltage source shown below, find: a. The stendy DC voltage that would cause the same heating effect across a resistance.

b. The average current supplied to a 10-2 resistor connected across the voltage source.

C. The average power supplied to a 1 e resistor across the voltage source.

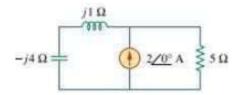

 $\sqrt{2}$ rms = $\int_{2}^{6} (1)^{2} dt + \int_{3}^{2} (-3)^{2} dt$

=1 (1+9)

2

Vrms = 5

Vrms = 2.24 V

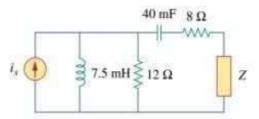


b) vs(+)=155 cos (wt-15°) 6,(H=20 cos(wt-22°) Pheise difference & \$ = -15--22=7, P.F=cos(7°)=0.993) C) Vs(t) = 208 cos(wt) (1)=1.7 sin(w6+175°)=1.7 cos(w6+175-90°)=cos(u6+8) phase difference: \$ = 0-85° = -85°, P.F = cos(-85°) = 0.087 leading d) ZL = (48+j16) e = 50.6 [18.4°, 670. P. F = cos (18.4) = 0.949 , lagging Problem: For the circuit shown below, determine whether the load is capacitive or inductive for the circuit shown leading power factor means current leads voltage, conswer. which indicates a capacitive loads. a) us(t)=42 cos(wt) v CL(t)=4.2 sin(w6) A = il(t)=4.2 cos(wt-90°) current leads voltages by 90° sindicating a capacitive load. d) Vs(t) = 10.4 cos (wt -12°) V 7 Nophase change means in(t) = 0.4 cos(wt-12°)A Ineither capacitive nor ind) A load impedance, ZL=10+j3-2, is connected to a source with line resistance equal 12, as shown below. Carlculate the following values: a) The average Power delivered to the total. b) The average fower absorbed by the line. c) The apparent power supplied by the generator. d) The Power Factor to the load. e) The power factor of line plus load.

Ztotal = 1+10+j3 = 11+j3=11.4 [15.26° I = Vs = 230 | 0° = 20.18 |-15.26° Ztotal 11.4/15.26° a) Pload = I2R = (20,18)2 x 10.44 = 4251.51 b) Pline = I2R = (20.18)2 x = 407.23 c) S = VI = 230x 20.18 = 4641 VA d) P.F=cos (16.7) = 0.958, lagging e) P.F = cos(15.26°) = 0.965, lagging

11. Problem # 11

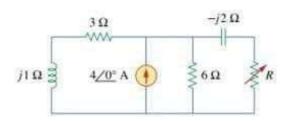
Given the circuit shown below, find the average power supplied or absorbed by each element.



3

12. Problem # 12

It is desired to transfer maximum power to the load **Z** in the circuit shown below. If the source current, $i_s(t) = 5\cos 40t$ A, find:


- a. the load impedance Z for maximum power transfer.
- b. the maximum average power.

13. Problem # 13

The variable resistor R in the circuit shown below is adjusted until it absorbs the maximum average power. Find:

- a. the load resistance R for maximum power transfer.
- b. the maximum average power.

Chapter 11, Problem 19.

The variable resistor R in the circuit of Fig. 11.50 is adjusted until it absorbs the maximum average power. Find R and the maximum average power absorbed.

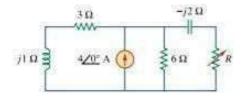


Figure 11.50 For Prob. 11.19.

Chapter 11, Solution 19.

At the load terminals,

$$\mathbf{Z}_{Th} = -j2 + 6 \| (3+j) = -j2 + \frac{(6)(3+j)}{9+j}$$

 $\mathbf{Z}_{Th} = 2.049 - j1.561$
 $\mathbf{R}_{L} = \left| \mathbf{Z}_{Th} \right| = \underline{2.576\Omega}$

To get
$$V_{Th}$$
, let $Z = 6 || (3+j) = 2.049 + j0.439$.

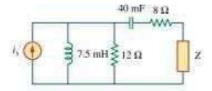
By transforming the current sources, we obtain

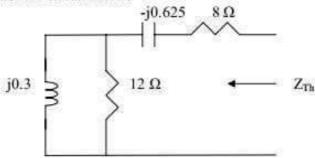
$$V_{D_b} = (4\angle 0^\circ) Z = 8.196 + j1.756$$

$$P_{\text{max}} = \left| \frac{8.382}{2.049 - \text{j}1.561 + 2.576} \right|^2 \frac{2.576}{2} = \frac{3.798 \text{ W}}{2}$$

Chapter 11, Problem 14.

It is desired to transfer maximum power to the load Z in the circuit of Fig. 11.45. Find Z and the maximum power. Let $i_s = 5\cos 40r$ A.




Figure 11.45 For Prob. 11.14.

Chapter 11, Solution 14.

We find the Thevenin equivalent at the terminals of Z.

40 mF
$$\longrightarrow \frac{1}{j\omega C} = \frac{1}{j40x40x10^{-3}} = j0.625$$

7.5 mH $\longrightarrow j\omega L = j40x7.5x10^{-3} = j0.3$

To find Z_{Th}, consider the circuit below.

$$Z_{Th} = 8 - j0.625 + 12 // j0.3 = 8 - j0.625 + \frac{12 \times 0.3}{12 + 0.3} = 8.0075 - j0.3252$$

$$Z_L = (Z_{Thev})^* = 8.008 + j0.3252\Omega$$

Chapter 11, Problem 19.

The variable resistor R in the circuit of Fig. 11.50 is adjusted until it absorbs the maximum average power. Find R and the maximum average power absorbed.

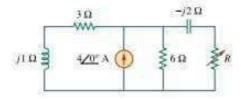


Figure 11.50 For Prob. 11.19.

Chapter 11, Solution 19.

At the load terminals,

$$\mathbf{Z}_{Th} = -j2 + 6 \parallel (3+j) = -j2 + \frac{(6)(3+j)}{9+j}$$

 $\mathbf{Z}_{Th} = 2.049 - j1.561$

$$R_L = |\mathbf{Z}_{Th}| = \underline{2.576\Omega}$$

To get
$$V_{Th}$$
, let $Z = 6 || (3+j) = 2.049 + j0.439$.

By transforming the current sources, we obtain

$$V_{\text{Th}} = (4\angle 0^{\circ}) \mathbf{Z} = 8.196 + j1.756$$

$$P_{\text{max}} = \left| \frac{8.382}{2.049 - \text{j}1.561 + 2.576} \right|^2 \frac{2.576}{2} = \underline{3.798 \text{ W}}$$