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Topic 2.2

Applications of first-order ODEs in Chemical Engineering

This topic covers the following applications of first-order ODEs in
chemical engineering:

Fluid Mechanics and Mixing

Heat Transfer and Thermal Systems
Mass Transfer and Diffusion

Reaction Engineering

Process Dynamics and Control

Chemical Separation Processes
Environmental and Biochemical Systems

The next topic will
be on the solution
of second-order
ODEs

AR



Introduction

First-order ordinary differential equations
are widely used in chemical engineering to
describe how process variables such as
concentration, temperature, and pressure
change with time or position. They are
essential for modeling reaction kinetics,
heat and mass transfer, and dynamic
behavior in reactors and process
equipment. These equations help engineers
predict system performance, optimize
designs, and control industrial operations
efficiently.

APPLICATION OF FIRST-ORDER ORDINARY

DIFFERENTIAL EQUATIONS IN CHEMICAL ENGINIENG

Process variables ]

|

Concentration, Temperature,
Pressure

J; v l
Reaction Heat and Dynamic
kinetics mass transfer behavior




Fluid Mechanics and Mixing

Process First-Order ODE Description

T @ —_ Gin . . . . .
Filling Tank (Constant i = A Linear rise of liquid height.
Inflow)
Filling Tank (Inflow + % = g%kﬁ Nonlinear ODE; level approaches
Outflow) steady-state.
Mixing Tank % = %(Ci - C) Solute concentration approaches
(Concentration inlet value exponentially.
Change)
Sedimentation Velocity % =g(1— Ly — 3“—?’; Terminal velocity of particles.

Pp ppd;,



Fluid Mechanics and Mixing

Filling Tank with Constant Inflow

Inflow
A tank is being filled with a constant volumetric flow rate, g;,,(m%s). —

The tank has a uniform cross-sectional area, A (m?).
There is no outflow — all the fluid entering the tank accumulates
inside. If g;;, = 0.002 m3/sand A = 0.5 m?, and the tank is initially

empty, determine the level of water after 10 s. Water

Take the tank as the control volume. The mass inside the tank at time t is

m(t) = pV(t)
where
* m is mass (kg),

e pis fluid density (kg/m? — assumed constant (incompressible),

e V(t) is liquid volume in tank (m>).



Mass conservation (general) gives

Inflow
—>

dm | .
E — mm(t) - mout(t)

where ™, and 1,; are mass flow rates in and out (kg/s).
Water

Relate mass flow rates to volumetric flow rates g (m?/s):

Mip = PYin, Mout = P 9out-

_ av dVv
Substitute: |:> PE = P9in — PYout E> ar = Qin (t) - Qcmt(t)

Assume uniform cross-sectional area A(m?), with only water inflow. Then V(t) — A h(t)

dh _ dh _ gin(t) _ l/t
A— =) 0 = 0> h(t)=ho+ () dr



If g;n, is constant (call it g;,,): Qin = 0.002m*/sand A = 0.5 m?,
hy = 0 m, determine the level of
Qin water after 10 s.

dh  qin

h(t) — h(] + — 1

dt A A

Given: g;, = 0.002m?®/s, A =0.5m?, hy =0m, t = 10s.

h(t) =0+ ( 0?: ;1: /S) t I:[) h(t) = 0.004¢ (m)

For a given time of 10 s, then the water level after this time becomes

h(10) = 0.004 x 10 = 0.04 m



Heat Transfer and Thermal Systems

Process First-Order ODE Description

Newton’s Law of ‘i—f = —k(T — Ty) Object temperature approaches
Cooling surroundings.

Heating a Tank pCPV% =mCy(Tin — T) + Q Describes transient liquid
(Energy Balance) temperature.

Heat Exchanger Start- dg;" = p[({'fv (T, — Ty) Hot fluid cools exponentially to
Up steady-state.

Catalyst Particle % = hA/(mC,)(T, —T) Lumped model of particle-gas

Heating heat transfer.



Heat Transfer and Thermal Systems

Newton’s Law of Cooling - Basic Concept

A cup of hot coffee at 90°C is left to cool in a room at 25°C. After 5
minutes, the coffee temperature is 70°C. Find the coffee
temperature after 10 minutes.

The rate of change of temperature of an object is proportional to the
difference between its temperature and the surrounding (ambient)
temperature:

For a closed system (no mass enters or leaves):

e E,,s = total energy of the system

disys — Q + W o Q = rate of heat transfer into the system
t

For this case: o W = rate of work done on the system

= No work (W'=0W=0) dE
SYs
= The only energy exchange is heating loss from |$ dty
the coffee to the surroundings.

=Q Egys = me,T



Differentiate with respect to time:

Substitute into the energy balance:

According to Newton's law of cooling:

Combine the Two Equations

dTl’
mcpﬁ = —hA(T —T,)

g 4
mcp

2

Q= —hA(T - T,)

2

dr _
dt

_k(T o Ta)

dT’

dt

dE,,,
dt

h = convective heat transfer coefficient (W/m?K)
A = surface area exposed to air (m?)
T — T, = temperature difference between coffee and air

The negative sign indicates heat leaves the system.

__h 1)

mcy,



Integrate:

dT’

T _k(T - Ta)

dt

T(t) =T, + (TO - Ta)eikt

where Tj is the initial temperature att = 0.
To = 90°C (initial temperature)

T, =25°C (ambient temperature |$
T'(5) =70°C (after 5 minutes)

T(10) =7 (after 10 minutes)

Find Temperature at £ = 10 min
T(10) = 25 + (90 — 25)e 0-0735(10)

T(10) = 25 + 65¢ 7

Substitute known values for t = 5:

70 = 25 + (90 — 25)e °*

k = 0.0735 min '

T(10) = 25 + 65(0.480)
2

T(10) = 56.2°C




Mass Transfer and Diffusion

Process

Gas Absorption (Film
Theory)

Adsorption Kinetics
(Pseudo-First-Order)

Membrane Transport

Drying Curve (Falling
Rate Period)

First-Order ODE

dg‘ - k(Cb - Cs)
% = k1(ge — q)
ic _ _J

dx D

W = k(X — X

Description

Surface concentration approaching

bulk value.

Solute adsorbed onto solid with time.

Steady-state diffusion through a
membrane.

Moisture content decays exponentially.



Mass Transfer and Diffusion

Perfume Dispersion in a Closed Classroom

A person sprays perfume in one corner of a closed classroom.
Immediately after spraying, the air near that corner attains a

. _ l
perfume vapor concentration of C,, = 2 X 1073 n;—Z.The perfume

then begins to spread toward the opposite corner. Find the time of a
his perfume to reach the other corner (4m away from the first

corner). k ~ 0.001s / '

In — Out + Gengé:ion — Consu;a(ption = Accumulation

dC 4 C4 1s the perfume concentration at the far corner.
W — k(C 10— C A) Cy4, 1s the source concentration,
k  is the mass transfer coefficient, which depends

.. : . on distance and air mixing,
This is a standard linear ODE. Its solution is:

CA(t) - CA() (]. — € kt)



Let's assume the perfume is detectable at C'y = Cyetect = 10 ° mol/m3

Ca(t) = Cyo (1 — e_kt)

10°=2x10"°(1—e ™)
dc
10" " — =k(Ca=Cy)
=1—e
2x 103 Ca(t) = Cyo(1—€™)
5x104=1—¢e* — e * = 0.9995
L=4m
In(0.9995)

—kt =1n(0.9995) = t=———



Reaction Engineering

Process

Batch Reactor (1st-

order)

Continuous Stirred-
Tank Reactor (CSTR)

Plug Flow Reactor
(PFR)

Autocatalytic Reaction

First-Order ODE

dC 4
dt

—kCy

g(CAo — Ca) — kCa

Description

Reactant concentration decays

exponentially with time.

Describes transient reactor

concentration before steady-state.

Concentration along reactor

volume.

Can reduce to first order if Cg is

constant.



Reaction Engineering

Production of table salt

In a batch reactor, equal volumes of hydrochloric acid
(HCI) and sodium hydroxide (NaOH) are mixed to produce
sodium chloride. Both reactants have initial
concentrations of 0.1 mol/L. The reaction is second order,
and the rate constant: k = 1.0 L/(mol-s).

o . . HCL NaOH H.O +NaCL
The neutralization reaction occurs according to:

Acid + Base —» H' OH™ + Salt

HCl + NaOH — NaCl + H>O

Determine the time required for [HCI] to decrease to 0.02 mol/L.

dC

1
= e pue S W S ¥
dt (®) kt-l—cio tk(C Co



1 /1 1
* Initial concentration: Cy = 0.1 mol/L t= k (5 B 60)
* Final concentration: C' = 0.02 mol /L

0.1 -
)
. 1/ 1 1 E 0.08 -
~1\0.02 0.1 5
T 0.06 -
t=50—10 o
g
t=40s ke D% 1
=
S 0.02 -
e
(@]
O
0 10 20 30 40 50

Time (s)



Process Dynamics and Control

Process First-Order ODE Description
Temperature Controller T% + T = Ku(t) Dynamic response of a controlled
(First-Order Lag) process.

. dP __ RT _
Pressure Response in a a5 = T(Ff — Fout) Pressure change with inflow/outflow.
Gas Tank
Instrumentation T% + T = Tirue Describes sensor lag.

(Thermocouple

Response)



First-order lag temperature controller

A small electrically heated, well-stirred tank is used to maintain the
temperature of a process fluid. When the heater power is suddenly

changed (a step input), the temperature of the liquid does not

immediately reach its new steady-state value but follows a gradual

rise described by a first-order lag behavior. Determine an

expression for the variation of temperature with time.

Given Data

Parameter

Time constant

System gain

Step input

Initial temperature deviation

Symbol

Value

20

1 (fort > 0)

Unit

°C/unit

°C

Process Dynamics and Control

@-
Rheostat




. Process Dynamics and Control
Energy (first-law) balance

Accumulation = input - loss @ ------------------------------ @
dT’ M vent
T in(f) — Qoss(t |
dT’
me, —- = a u(t) — hA[T(t) — Teny] <\_//’—\ :
dT I i
mep -+ hAT(t) = au(t) + hATeyy g @
v Rheostat

Write in deviation form by defining deviation from
ambient:

O(t) =T(t) — Tony

dé
Since T,y is constant, df /dt = dT'/dt. Substitute: I$ mep — +hA6(t) = aul(t)

mc, @ Q

Divide both sides by h A: A df +0(t) = A u(t)



g r="% (time constant, s) T
et <
o
K=— (static gain, “C per unit u) mc, df o
hA — — 4+ 0(t) = — u(t
~ hd a0 = gm0

C
T = %: Larger thermal mass (mc,, (or smaller heat loss (hA) - slower response (larger ).

a .

K = More heater power per controller unit (o) or smaller loss (hA) — larger steady-state temperature

hA
change per unit u.
me, d0 _ @ d
na gt 700 = 7 ©> Tt +6(t) = Ku(t)
Divide by 7

dd 1 K
— 4+ —0(t) = — :
dt i T (t) T u(t)

This is a first-order linear ODE: 8’ + af = b(t) witha = % and b(t) = %u(t)



Y i P =Q P =7, Q)= "ult

the integrating factor pu(t)

u(t) = el P()dt _ ef},dt — ot/

6 = i[(pQ)dm |$ 6(t) =e V7 [/ gu(t)ethdt + C’]

~t/T ‘K "I g4t
step input u(t) = U, I$ o(t) =e [/; ?ert/ dt +9(0)]

0(t) = KU, (1—e /") +6(0)e /"
K =20 °C/unit

0= 0 5> [f) =20 (1 B e_m) > |T(t) = Teno +20 (1 —e ')

U0=1



Separation Processes

Process

Distillation (Dynamic

Component Balance)

Liquid-Liquid Extraction
(Single Stage)

Gas-Liquid Absorber

Dynamics

First-Order ODE

Description

Top product composition dynamics.

Solute transfer toward equilibrium.

Change in gas concentration along

height z.



Separation Processes

Single-stage Extraction Unit

A single-stage liquid—liquid extraction is performed in a stirred tank. The feed contains a solute at a
concentration of Cr = 0.1 mol/L. The solvent is initially free of solute. The solute transfer rate into the
solvent is proportional to the difference between the equilibrium concentration C* = 0.3 mol/L and
the current solute concentration in the solvent C(t):

Target metal: @ Non-target metals: @ _J
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Separation Processes

Single-stage Extraction Unit

General mass balance for the solute in the solvent phase: For a well-mixed solvent tank in a single-
stage batch extraction:

Accumulation = Inflow of solute — Outflow of solute + Generation of solute

. _ Msolute = Mass of solute in solvent
the accumulation term is:
Tiransfer = rate of mass transfer from feed to solvent

d(msolutc) —
— Ttransfer
dt

Msolute — C(t) V

dMesolute dC
GMsolute _ 1, 4%
dt dt

In liquid-liquid extraction, mass transfer is proportional to the driving force:

If the solvent has volume V' (assumed constant), then:

Ttransfer — k(C* - C(t)) |4



d(msolute) — dmsolute dC #
dt = Ttransfer o — Vﬁ Ttransfer — k(C — C(t)) V

C’(t) = solute concentration in solvent at time ¢

C™ = equilibrium solute concentration in solvent if the phases were at equilibrium

k = mass transfer coefficient

dC . *
— =k(C" - OV — = k(C" - 0)

General solution
C(t)=C"+ (Cy — C’*)e"“

Substitute values: C* = 0.3, Cp = 0, k = 0.2: C(t) = 0.3+ (0 —0.3)e **
=0.3(1 —e %)

C(5)=031-e"*)=0.3(1-¢1") |j> C(5) ~ 0.19 mol /L




Environmental and Biochemical Systems

Process First-Order ODE Description

Biodegradation (1st-order % = —kC Pollutant concentration in wastewater.
decay)

Microbial Growth (Log % = pX Exponential biomass growth.

phase)

Atmospheric % = —k(C — C¢) Pollutant approaches equilibrium with

Contaminant Removal surroundings.



Environmental and Biochemical Systems

Biomass growth in a bioreactor

Agitation system

A batch bioreactor contains a microbial culture with an
initial biomass concentration of X, = 0.2 g/L. The
microorganisms grow in a nutrient-rich medium under
ideal conditions. Assume the growth is exponential and
limited only by time (nutrient excess). The specific growth
rate is 4 = 0.3 A~ L. Determine the biomass concentration
X(t)at any time tand find the concentration after 6 hours.

D> .
System monitor

Sensor probes

Thermal jacket

Start from the fundamental mass balance: For a well-mixed batch reactor:

Accumulation = Generation — Consumption + Inflow — Outflow

Batch reactor — no inflow or outflow

No consumption of biomass except growth — Consumption = 0

d(Biomass mass)
dt

= Rate of biomass generation



Let V' = reactor volume (constant), X (¢) = biomass concentration:

dmy dX

mx =XV = m = Vg

Biomass grows proportionally to its current concentration:

Rate of biomass generation = u XV

Where p is the specific growth rate.

dX dX
= —uX X
Vigg =02V = g =
_ t
Separate variables: % = udt |:> InX = ut+C |:> X(t) = Xqe"

X(t)=02e"" g/L C) X(6)=02e"" =0.2¢ ~121g/L
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End of Topic 2.2
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