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Sinusoidal Steady-State Analysis of
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• Sinusoids’ features

• Phasors

• Phasor relationships for circuit elements

• Impedance and admittance

• Kirchhoff’s laws in the frequency domain

• Impedance combinations



Alternating (AC) Waveforms

➢ The term alternating indicates only that the waveform alternates between two prescribed levels in 

a set time sequence.

➢ Instantaneous value:  The magnitude of a waveform at any instant of time; denoted by the 

lowercase letters (v1, v2).

➢ Peak amplitude:  The maximum value of the waveform as measured from its average (or mean) 

value, denoted by the uppercase letters Vm.

➢ Period (T):  The time interval between successive repetitions of a periodic waveform.

➢ Cycle:  The portion of a waveform contained in one period of time.

➢ Frequency: (Hertz) the number of cycles that occur in 1 s

➢ The sinusoidal waveform is the only alternating waveform whose shape is unaffected by the 

response characteristics of R, L, and C elements.
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Sinusoids

➢ The sinusoidal wave form can be derived from the length of the vertical projection of a 

radius vector rotating in a uniform circular motion about a fixed point. 

➢ The velocity with which the radius vector rotates about the center, called the angular velocity, 

can be determined from the following equation:

➢ The angular velocity () is:

Since  is typically provided in radians per second, the angle α obtained using α = t is usually 

in radians.

➢ The time required to complete one revolution is equal to the period (T) of the sinusoidal 

waveform.  The radians subtended in this time interval are 2π.
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• A sinusoid is a signal that has the form of the sine or cosine function. 

• A general expression for the sinusoid,

    
where

  Vm  =  the amplitude of the sinusoid

  ω  = the angular frequency in radians/s

  Ф =  the phase

Sinusoids
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Sinusoids

A periodic function is one that satisfies v(t) = v(t + nT), for all t and for all 

integers n. 
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• Only two sinusoidal values with the same frequency can be compared by their 

amplitude and phase difference. 

• If phase difference is zero, they are in phase; if phase difference is not zero, 

they are out of phase.



Phase of Sinusoids

➢  The terms lead and lag are used to indicate the relationship between two 

sinusoidal waveforms of the same frequency plotted on the same set of axes.

➢ The cosine curve is said to lead the sine curve by 90°.

➢ The sine curve is said to lag the cosine curve by 90°.

➢ 90 is referred to as the phase angle between the two waveforms.

➢When determining the phase measurement we first note that each sinusoidal 

function has the same frequency, permitting the use of either waveform to 

determine the period.

➢  Since the full period represents a cycle of 360°, the following ratio can be 

formed:



Phase of Sinusoids

➢ Consider the sinusoidal voltage having phase φ, ( ) sin( )mv t V t = +

• v2 LEADS v1 by  phase φ.

• v1 LAGS v2 by  phase φ.

• v1 and v2 are out of phase.



Sinusoids

Example:

Given a sinusoid, 5sin(4t - 60o) , calculate its amplitude, phase, 

angular frequency, period, and frequency.

Solution:
Amplitude = 5, phase = –60o, angular frequency = 4 rad/s, Period = 0.5 s, 

frequency = 2 Hz.



Sinusoids

Example: Find the phase angle between i1 = -4sin(377t + 25o) and 

i2 = 5cos(377t - 40o). Does i1 lead or lag i2?

Solution:

Since sin(ωt+90o) = cos ωt

therefore, i1 leads i2 by 155o. 
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Trigonometric Identities

➢ Sine and cosine form conversions.
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• A phasor is a complex number 
that represents the amplitude 
and phase of a sinusoid. 

• It can be represented in one of 
the following three forms:

Phasor
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Example:



Mathematic operation of complex number:   

1. Addition 

2. Subtraction

3. Multiplication

4. Division

5. Reciprocal

6. Square root

7. Complex conjugate

8. Euler’s identity 

Phasor
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Phasors

(Time Domain Re pr.) (Phasor Domain Re presentation)

( ) Re{ } (Converting Phasor back to time)
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➢ A phasor is a complex number that represents the amplitude and phase of a sinusoid.

➢ Phasor is the mathematical equivalent of a sinusoid with time variable dropped.

➢ Phasor representation is based on Euler’s identity.

➢ Given a sinusoid v(t)=Vmcos(ωt+φ).
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Phasor as Rotating Vectors
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• Transform a sinusoid to and from the time  domain to the 
phasor domain:

    

 

     (time domain)  (phasor domain)

Phasor
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• Amplitude and phase difference are two principal    concerns in the 

study of voltage and current sinusoids. 

• Phasor will be defined from the cosine function in all our 

proceeding study. If a voltage or current expression is in the form 

of a sine, it will be changed to a cosine by subtracting from the 

phase.



Phasor Diagrams

➢ The SINOR              Rotates on a circle of radius Vm at an angular velocity of ω 

in the counterclockwise direction. 
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Example:

Transform the following sinusoids to phasors:

i = 6cos(50t – 40o) A,     v = –4sin(30t + 50o) V

Phasor

Solution:

a.  I                        A

b.  Since –sin(A) = cos(A+90o);

v(t) = 4cos (30t+50o+90o) = 4cos(30t+140o) V 

     Transform to phasor => V                    V
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Example:

    Transform the sinusoids corresponding to phasors                         

Phasor

V  3010 −=V

A  j12)   j(5  −=I

Solution:

a)   v(t) = 10cos(t + 210o) V

b)   Since 

      i(t) = 13cos(t + 22.62o) A
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The differences between v(t) and V:

• v(t) is instantaneous or time-domain representation
V is the frequency or phasor-domain representation.

• v(t) is time dependent, V is not.

• v(t) is always real with no complex term, V is generally 

complex.

Note: Phasor analysis applies only when frequency is  

constant; when it is applied to two or more sinusoid 

signals only if they have the same frequency. 

Phasor



Differentiation and Integration in Phasor Domain

(Time Domain) (Phasor Domain)
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➢ Differentiating a sinusoid is equivalent to multiplying its corresponding 

phasor by jω.
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➢  Integrating a sinusoid is equivalent to dividing its corresponding phasor by jω.



Example: 

Use phasor approach, determine the current i(t) in a circuit 

described by the integro-differential equation.

Phasor

Answer:  i(t) = 4.642cos(2t + 143.2o) A
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• We can derive the differential equations for the following 
circuit in order to solve for vo(t) in phase domain Vo.

 

Phasor
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• However, the derivation may sometimes be very tedious.

Is there any quicker and more systematic methods to do it?



The answer is YES!

Phasor

Instead of first deriving the differential equation 

and then transforming it into phasor to solve for Vo, 

we can transform all the RLC components into 

phasor first, then apply the KCL laws and other 

theorems to set up a phasor equation involving Vo 

directly.



Adding Phasors Graphically

➢ Adding sinusoids of the same frequency is equivalent to 

adding their corresponding phasors. 

V=V1+V2



Find v(t) = v1(t) + v2(t)

v1(t) = -10sin(t + 30o) v2(t) = 20cos(t - 45o)

Example:



Example:



Phasor Relationships for Circuit Elements

Resistor: Inductor: Capacitor:



Phasor Relationships for Circuit Elements

Resistor: Inductor: Capacitor:



Phasor Relationships for Circuit Elements

Summary of voltage-current relationship

Element Time domain Frequency domain
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Phasor Relationships for Circuit Elements

Example:

If voltage v(t) = 6cos(100t – 30o) is applied to a 50 μF capacitor, 

calculate the current, i(t), through the capacitor.

Answer: i(t) = 30 cos(100t + 60o) mA



• The impedance Z of a circuit is the ratio of the phasor voltage 

V to the phasor current I, measured in ohms Ω.

  where R = Re(Z) is the resistance and X = Im(Z) is the 

reactance. Positive X is for L and negative X is for C.

• The admittance Y is the reciprocal of impedance, measured in 

siemens (S). 

Impedance and Admittance
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Impedance and Admittance
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Impedances and admittances of passive elements
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Impedance and Admittance
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Impedance and Phase Angle



Impedance and Admittance

After we know how to convert RLC components from time to 

phasor domain, we can transform a time domain circuit into a 

phasor/frequency domain circuit. 

Hence, we can apply the KCL laws and other theorems to 

directly set up phasor equations involving our target variable(s) 

for solving.



Impedance and Admittance

Example: 

Refer to Figure below, determine v(t) and i(t). 

Answers: 

 i(t) = 1.118cos(10t – 26.56o) A; 

v(t) = 2.236cos(10t + 63.43o) V

)10cos(5 tvs =



Example:

Calculate v(t) and i(t) in the circuit given.



Kirchhoff’s Laws in the Frequency Domain

• Both KVL and KCL are hold in the phasor domain or more 

commonly called frequency domain.

• Moreover, the variables to be handled are phasors, which are 

complex numbers.

• All the mathematical operations involved are now in complex 

domain.



Impedance Combinations

• The following principles used for DC circuit analysis all 

apply to AC circuit.

 

• For example:

a. voltage division

b. current division

c. circuit reduction

d. impedance equivalence

e. Y-Δ transformation 
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Impedance of Joint Elements

➢ The Impedance Z represents the opposition of the circuit to 
the flow of sinusoidal current.

➢ The Reactance is Inductive if X is positive and it is Capacitive 
if X is negative.
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Impedance Combinations

Example 

Determine the input impedance of the circuit in figure below at 

ω =10 rad/s. 

    

Answer: Zin =  32.38 –  j73.76 



Impedance as a Function of Frequency

➢ As the applied frequency increases, the resistance of a resistor 
remains constant, the reactance of an inductor increases 
linearly, and the reactance of a capacitor decreases nonlinearly.



Application of KVL for Phasors

➢ The Kirchoff”s Voltage Law (KVL) holds in the frequency domain. 
For series connected impedances:
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Admittance of Joint Elements

➢ The Admittance Y represents the admittance of the circuit to 
the flow of sinusoidal current. The admittance is measured in 
Siemens (s)
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Parallel Combination for Phasors

➢ The Kirchoff”s Current Law (KCL) holds in the frequency domain. 
For series connected impedances:

➢ The Current Division for two elements is:
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Application of Current Division for Phasors



Example: Calculate vo(t) in the circuit given.



Z1

Z3

Example: Calculate Zin of the circuit at  = 10 rad/s

Z2



Example:



Example: Cont’d



Example: Cont’d



Sinusoidal Steady-State Analysis 

• Basic Approach

• Nodal Analysis

• Mesh Analysis

• Superposition Theorem

• Source Transformation

• Thevenin Equivalent Circuits



Steps to Analyze AC Circuits:

1. Transform the circuit to the phasor or frequency domain.

2. Solve the problem using circuit techniques (nodal analysis, 

mesh analysis,     superposition, etc.).

3. Transform the resulting phasor to the time domain.

Time to Freq
Solve 

variables in Freq
Freq to Time

Basic Approach



Nodal Analysis

Example: Using nodal analysis, find V1 and V2 in the circuit of 

figure below.



Mesh Analysis

Example: Find Io in the following figure using mesh analysis.

 

Answer:   Io = 1.19465.44 A



Superposition Theorem

When a circuit has sources operating at different frequencies, 

• The separate phasor circuit for each frequency must be 

solved independently, and 

• The total response is the sum of time-domain responses of 

all the individual phasor circuits. 



Superposition Theorem

Example:   Calculate vo in the circuit using the superposition theorem. 

Answer 

vo = 4.631 sin(5t – 81.12) + 1.051 cos(10t – 86.24) V



Source Transformation



Source Transformation

Example: 

   Find Io in the circuit of figure below using the concept of 

source transformation. 

Io = 3.28899.46 A 



Thevenin Equivalent Circuit

Thevenin transform



Thevenin Equivalent Circuit

Example: Find the Thevenin equivalent as seen from the load side.



Thevenin Equivalent Circuit

Example: Find the Thevenin equivalent as seen from the load side.



Thevenin Equivalent Circuit

Example: Find the Thevenin equivalent at terminals a–b of the 

circuit below.

Zth =12.4 – j3.2 

VTH = 18.97-51.57 V



Topic 2 - AC Power Calculation

• Instantaneous and Average Power

• Maximum Average Power Transfer

• Effective or RMS Value

• Apparent Power and Power Factor

• Complex Power 

• Conservation of AC Power

• Power Factor Correction

• Power Measurement



Sinusoidal power at 2 Constant power
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Instantaneous and Average Power

• The instantaneously power, p(t)

p(t) > 0: power is absorbed by the circuit; p(t) < 0: power is absorbed by the source.

The instantaneous power p(t) is composed of a constant part (DC) and a time 

dependent part having frequency 2ω.
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Instantaneous and Average Power

• The average power, P, is the average of the instantaneous power 

over one period.

1. P is not time dependent. 

2. When θv = θi , it is a purely 

resistive load case. 

3. When θv– θi = ±90o, it is a 

purely reactive load case. 

4. P = 0 means that the circuit 

absorbs no average power. 



Instantaneous Power

1 1
2 2

( ) ( ) ( ) cos( ) cos(2 )m m v i m m v ip t v t i t V I V I t    = = − + + +



Instantaneous Power 
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Resistive Circuit and Real Power



Inductive Circuit and Reactive Power



Capacitive Circuit and Reactive Power



Instantaneous and Average Power

Example:

 Calculate the instantaneous power and average power 

absorbed by a passive linear network if:

Answer: 387.5W )W,10600cos(20t385.7 −+
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Average Power

➢The average power P is the average of the instantaneous power over 

one period .
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Example:

 A current                      flows through an impedance.                

Find the average power delivered to the impedance.

Average Power

Answer: 927.2W

= 30  10  I

Ω2220 −=Z



Example: Find the average power absorbed by resistor and inductor. Find the 

average power supplied by the source

Average Power



Average Power

Example: Calculate the average power absorbed by each of the five 

elements in the circuit given.



Average Power



Effective or RMS Value
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The rms value is a constant itself which 

depending on the shape of the function i(t).

The total power dissipated by R is given by:

➢ The EFFECTIVE Value or the Root Mean Square (RMS) value of a periodic 

current is the DC value that delivers the same average power to a resistor as the 

periodic current.

a) AC circuit

b) DC circuit



Effective or RMS Value
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The average power can be written in terms of the 

rms values:
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The rms value of a sinusoid i(t) = Imcos(t) is 

given by:

a) AC circuit

b) DC circuit

➢ The average power for resistive loads using the (RMS) value is:
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➢ Example: Find the RMS value of the current waveform.   Calculate the 

average power if the current is applied to a 9  resistor.
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RMS Value



Example: Find the RMS value of the full-wave rectified sine wave.   

Calculate the average power dissipated in a 6  resistor.

RMS Value



Apparent Power and Power Factor

• Apparent Power, S, is the product of the r.m.s. values of voltage and 

current.

• It is measured in volt-amperes or VA to distinguish it from the average 

or real power which is measured in watts.

• Power factor is the cosine of the phase difference between the voltage 

and current. It is also the cosine of the angle of the load impedance.

)θ (θ cos S   )θ (θ cos I VP ivivrmsrms −=−=

Apparent Power, S Power Factor, pf



Apparent Power and Power Factor

)cos( iv
S

P
pf  −==

1
2

cos( ) cos( )m m v i Rms Rms v iP V I V I   = − = −

Purely resistive 

load (R)
θv– θi = 0,   Pf = 1 P/S = 1, all power are 

consumed

Purely reactive 

load (L or C)
θv– θi = ±90o,     

pf = 0

P = 0, no real power 

consumption

Resistive and 

reactive load  

(R and L/C)

θv– θi  > 0

θv– θi < 0

• Lagging - inductive 

load

• Leading - capacitive 

load

1

2
m m Rms RmsS V I V I= =



Example: Calculate the power factor seen by the source and the 

average power supplied by the source

Power Factor



Complex Power

➢Complex power S is the product of the voltage and the complex conjugate 

of the current: 

imvm θIθV == IV

ivrmsrms θ θ  I V I V
2

1
−=

➢ The COMPLEX Power S contains all the information pertaining to the 

power absorbed by a given load.



Complex Power

ivrmsrms θ θ  I V I V
2

1
 S −== 

)θ (θsin  I V j )θ (θ cos I VS ivrmsrmsivrmsrms −+−=

P: is the average power in watts delivered to a load and it is 

    the only useful power.

Q: is the reactive power exchange between the source and

    the reactive part of the load. It is measured in VAR.

• Q = 0 for resistive loads (unity pf).

• Q < 0 for capacitive loads (leading pf).

• Q > 0 for inductive loads (lagging pf). 

S  =      P             +   j               Q 



Complex Power

)θ (θsin  I V j )θ (θ cosI VS ivrmsrmsivrmsrms −+−=

Apparent Power, S = |S| = Vrms*Irms = 

Real power,        P = Re(S) = S cos(θv – θi)

Reactive Power,  Q = Im(S) = S sin(θv – θi) 

Power factor,      pf = P/S = cos(θv – θi)

S  =      P             +   j               Q 

22 QP +

• Real Power is the actual power dissipated by the load.

• Reactive Power is a measure of the energy exchange between source and 

reactive part of the load.



Complex Power

)θ (θsin  I V j )θ (θ cos I V S ivrmsrmsivrmsrms −+−=

S  =      P             +   j               Q 

Impedance Triangle
Power Factor

Power Triangle

➢ The COMPLEX Power is represented by the POWER TRIANGLE similar to 

IMPEDANCE TRIANGLE. Power triangle has four items: P, Q, S and θ.



Real and Reactive Powers

➢ The REAL Power is the only useful power delivered to the load.

➢The REACTIVE Power represents the energy exchange between the source 

and reactive part of the load. It is being transferred back and forth between 

the load and the source

➢The unit of Q is volt-ampere reactive (VAR)

2 2 ( )Rms RmsI Z I R jX P jQ= = + = +S

Re{ } Im{ }

            =Real Power+Reactive Po     w er

P jQ j= + = +S S S

2

2

= cos( ) Re{ }

= sin( ) Im{ }

Rms Rms v i Rms

Rms Rms v i Rms

P V I I R

Q V I I X

 

 

− = =

− = =

S

S



Example: Two loads are connected in parallel. Load 1 has 2 kW, pf=0.75 

leading and Load 2 has 4 kW, pf=0.95 lagging. Calculate the pf of two loads 

and the complex power supplied by the source.

Complex Power



Example: The 60  resistor absorbs 240 Watt of average power. Calculate V 

and the complex power of each branch. What is the total complex power?

Complex Power



Complex Power



Example: A 120-Vrms 60-Hz source supplies two loads connected in parallel, as 

shown below. 

(a) Find the power factor of the parallel combination.

(b) Calculate the value of the capacitance connected in parallel that will raise the 

power factor to unity.

Solution:

Complex Power



Complex Power



1 2 1 2 1 2( ) ( )S P jQ S S P P j Q Q= + = + = + + +

Use of Power Triangles



Conservation of AC Power

➢The complex real, and reactive powers of the sources equal the 

respective sums of the complex, real, and reactive powers of the 

individual loads. 

For parallel or series connection:

* * *

1 1 2 2 N N

1 2 N

S = V I + V I + + V I

S = S + S + + S







Complex power is Conserved



Power Factor Correction

Power factor correction is the process of increasing the power factor 

without altering the voltage or current to the original load.

Power factor correction is necessary for economic reason. 



Power Factor Correction

Q1 = S1 sin θ1

= P tan θ1 

Q2 = P tan θ2

Qc = Q1 – Q2 

= P (tan θ1 - tan θ2) 

      = ωCV2
rms

P = S1 cos θ1 

2

rms

21

2

rms

c

V ω

)θtan θ(tan  P
    

ωV

Q
    C

−
==



Power Factor Correction

➢ The process of increasing the power factor without altering the voltage or 

current to the original load is called power factor correction.

1 2

1 1 1 1 1 1 2 2

     Real power stays same

cos sin tan ta

              

n

P P P

P S Q S P Q P   

= =

= = = =

1 2 1 2(tan tan )CQ Q Q P  = − = −

1 2

2 2

(tan tan )C

rms rms

Q P
C

V V

 

 

−
= =

2

rms

L

V
L

Q
=

• The capacitance value needed to change the pf angle from 1 to 2 .

• Similarly the inductance value needed to change the pf angle from 1 to 2 

for a capacitive load.



Example: Find the value of the capacitance needed to correct a load of 140 kVAR at 

0.85 lagging pf to unity pf. The load is supplied by a 110 Volt (rms), 60 Hz line.

Power Factor Correction



Power Measurement

The wattmeter is the instrument for measuring the average power. Two coils are used, 

the high impedance Voltage coil and the low impedance Current coil.

If )cos()( vm tVtv  += and )cos()( im tIti  +=

)θ (θ cos I V     )θ (θ cos I V    P ivmm2
1

ivrmsrms −=−=

The basic structure

Equivalent Circuit with load

Wattmeter measures the average power given by:



Power Measurement

Example: Find the wattmeter reading

The wattmeter measures the average power 

from the source



Maximum Average Power Transfer

LLL X j R Z +=

THTHTH X j  R  Z +=

The maximum average power can be 

transferred to the load if 

     XL = –XTH  and RL = RTH

TH

2

TH

max
R 8

V
   P =

If the load is purely real, then TH

2

TH

2

THL Z   X  R   R =+=

a) Circuit with a load

b) Thevenin Equivalent circuit 

ZL = RTH - jXTH = Z*
TH



Maximum Average Power Transfer

• Write the expression for average power associated with ZL: P(ZL). 

ZL = RL + jXL



Example:

For the circuit shown below, find the load impedance ZL that absorbs 

the maximum average power. Calculate that maximum average power.

Answer: 

ZL = 3.415 – j0.7317 

Pmax = 1.429W

Maximum Average Power Transfer



Solution:

Maximum Average Power Transfer



Maximum Average Power Transfer



Maximum Average Power for Resistive Load

➢ When the load is PURELY RESISTIVE, the condition for maximum power transfer is: 

 

➢Now the maximum power can not be obtained from the Pmax formula given before.

2 2

L Th Th ThR R X Z= + =

➢ Example: Calculate the resistive load needed for maximum power transfer and 

the maximum average power.

Solution:



Maximum Average Power for Resistive Load

➢ Notice the way that the maximum power is calculated using the Thevenin 

Equivalent circuit.



Topic 9: 3-Phase Circuit Analysis



Three phase Circuits

➢ An AC generator designed to develop a single sinusoidal voltage for each rotation of the 

shaft (rotor) is referred to as a single-phase AC generator.

➢  If the number of coils on the rotor is increased in a specified manner, the result is a 

Polyphase AC generator, which develops more than one AC phase voltage per rotation of 

the rotor

➢  In general, three-phase systems are preferred over single-phase systems for the 

transmission of power for many reasons. 

 1. Thinner conductors can be used to transmit the same kVA at the same voltage, 

which reduces the amount of copper required (typically about 25% less).

 2. The lighter lines are easier to install, and the supporting structures can be less 

massive and farther apart.

 3. Three-phase equipment and motors have preferred running and starting 

characteristics compared to single-phase systems because of a more even 

flow of power to the transducer than can be delivered with a single-phase supply.

 4. In general, most larger motors are three phase because they are essentially self-

 starting and do not require a special design or additional starting circuitry.



a) Single phase systems two-wire type
b) Single phase systems three-wire type.

Allows connection to both 120 V and 240 V.

Two-phase three-wire system. 

The AC sources operate at different phases.

Single-Phase, Two-Phase, Three phase Circuits



Three-phase Generator

➢ The three-phase generator has three induction coils placed 

120° apart on the stator.

➢ The three coils have an equal number of turns, the voltage 

induced across each coil will have the same peak value, shape 

and frequency.



Balanced Three-phase Voltages

Three-phase four-wire system

Neutral WireA Three-phase Generator

Voltages having 120 phase difference



Balanced Three phase Voltages

a) Wye Connected Source b) Delta Connected Source

a) abc or positive sequence       b) acb or negative sequence

0

120

240

an p

bn p

cn p

V V

V V

V V

=  

= − 

= − 

0

120

240

an p

bn p

cn p

V V

V V

V V

=  

= + 

= + 

Neutral Wire



Balanced Three phase Loads

a) Wye-connected load               b) Delta-connected load 

1 2 3

Conversion of Delta circuit to Wye or Wye to Delta. 
Balanced Impedance Conversion:

          

          

Y

a b c

Z Z Z Z

Z Z Z Z

= = =

= = = 1
Z 3 Z

3
Y YZ Z = =

➢ A Balanced load  has equal impedances on all the phases



Three phase Connections Y-Y Connection

➢ Both the three phase source and the three phase load can be 

connected Wye Wye.

➢ Y-Y connection



Three phase Connections Y-Y Connection

➢ Example: Calculate the line currents in the three-wire Y-Y 

system shown below.



Three phase Connections Y- Connection

➢ Both the three phase source and the three phase load can be 

connected Wye Wye.

➢  Y- connection



Three phase Connections Y- Connection

➢ Example: A balanced abc-sequence Y-connected source 

with Van = 100∠10◦ V is connected to a ∆-connected balanced 

load (8 + j4) Ω per phase. Calculate the phase and line currents.

If the phase voltage Van = 100∠10◦, then the line voltage is

The load impedance is

The phase currents are The line currents are

Alternatively, using 

single-phase analysis,



THREE PHASE CIRCUITS
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For a balanced three phase circuit the instantaneous power is constant
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Proof of Theorem

For a balanced three phase circuit the instantaneous power is constant
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SOURCE/LOAD CONNECTIONS

BALANCED Y-Y CONNECTION

=

−=

=
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0||
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VV

VV
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phase voltages
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Relationship between phase and line voltages

Example: For an abc sequence, balanced Y-Y three phase circuit −= 30208abV

Determine the phase voltages.

Balanced Y - Y

Positive sequence a-b-c

= 30||3 pab VV

=

−=

=
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The phasor diagram could be rotated by any angle



Example: For an abc sequence, balanced Y - Y three phase circuit

+=+== 1020,11,)(120|| jZjZVV phaselinermsphase source

Determine line currents and load voltages.

Because circuit is balanced data on 

any one phase are sufficient

0120
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as reference

=

−=

=

120120

120120

0120

an

bn

an

V

V

V

Abc sequence

rmsA

j

V
I an

aA

)(65.2706.5

65.2771.23

0120

1121

−=




=

+
=

rmsAI

rmsAI

cC

bB

)(65.2712006.5

)(65.2712006.5

−=

−−=

=+= 57.2636.22)1020( aAaAAN IjIV

rmsVVAN )(08.115.113 −=

rmsVV

rmsVV

CN

BN

)(92.11815.113

)(08.12115.113

=

−=



Example: For an abc sequence, balanced Y - Y three phase circuit

 voltagesline the Find .)(90120 rmsVVan =

Relationship between

phase and line voltages

= 30||3 pab VV
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Example: For an abc sequence, balanced Y - Y three phase circuit

+=+== 38,11,)(6.2602.104|| jZjZVV phaselinermsphase load,

Determine source phase voltages

rmsV )(6.2602.104 =
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3j

Currents are not required. Use inverse

voltage divider
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DELTA-CONNECTED LOAD

Method 1: Solve directly
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Method 2: We can also convert the delta 

connected load into a Y connected one. 

The same formulas derived for resistive 

circuits are applicable to impedances
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
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line II Line-phase current

relationship

iprelationsh

 voltagephase-Line
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Example:

currents phase the Find
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=+= 02.3752.1254.710 jZ

Example: Delta-connected load consists of 10-Ohm resistance in series with 20-mH 

inductance. Source is Y-connected, abc sequence, 120-V rms, 60Hz. Determine all line and 

phase currents
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Alternatively, determine first the line currents

and then the delta currents



POWER RELATIONSHIPS



iprelationsh

 voltagephase-Line

+=

=





30

||3||

phase

phaseVV



−=

=





30

||3||

 line

line II

Line-phase current

relationship

*3 phasephaseTotal IVS =

*3 linelineTotal IVS =

*3 = IVS linetotal

*3 linelineTotal IVS =

flinelinetotal

flinelinetotal

IVQ

IVP





sin||||3

cos||||3

=

=

lineV

lineI



Power factor angle

Impedance angle





EXAMPLE: Determine the magnitude of the line currents and the value of 

load impedance per phase in the delta
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Example: For an abc sequence, balanced Y - Y three phase circuit
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Example: Determine the line currents and the combined power factor
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Example: A Y -Y balanced three-phase circuit has a line voltage of 208-Vrms. The total real 

power absorbed by the load is 12kW at pf=0.8 lagging. Determine the per-phase impedance

of the load
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Example: A 480-V rms line feeds two balanced 3-phase loads. The loads are rated 

 Load 1: 5kVA at 0.8 pf lagging Load 2: 10kVA at 0.9 pf lagging.

Determine the magnitude of the line current from the 408-V rms source
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POWER FACTOR CORRECTION
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    load

Low pf
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Similar to single phase case.

Use capacitors to increase the

power factor
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EXAMPLE:

f=60 Hz, Vline=34.5 kVrms. 

Required pf=0.94 lagging. 
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