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Alternating (AC) Waveforms

» The term alternating indicates only that the waveform alternates between two prescribed levels in
a set time sequence.

» Instantaneous value: The magnitude of a waveform at any instant of time; denoted by the
lowercase letters (vq, V).

» Peak amplitude: The maximum value of the waveform as measured from its average (or mean)
value, denoted by the uppercase letters V..

» Period (T): The time interval between successive repetitions of a periodic waveform.
» Cycle: The portion of a waveform contained in one period of time.
> Frequency: (Hertz) the number of cycles that occurinls f=1<

» The sinusoidal waveform is the only alternating waveform whose shape is unaffected by the
response characteristics of R, L, and C elements.
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Sinusoids

/ V., sina

» The sinusoidal wave form can be derived from the length of the vertical projection of a
radius vector rotating in a uniform circular motion about a fixed point.

» The velocity with which the radius vector rotates about the center, called the angular velocity,
can be determined from the following equation:

distance (degrees or radians)
time (seconds)

Angular velocity =

» The angular velocity () is: ¢ = a/t

Since w is typically provided in radians per second, the angle o obtained using o = wt is usually
in radians.

» The time required to complete one revolution is equal to the period (T) of the sinusoidal
waveform. The radians subtended in this time interval are 2.

a):2—7Z or w=2rf
T



Sinusoids

« Asinusoid is a signal that has the form of the sine or cosine function.
« A general expression for the sinusoid,

v(t) =V._ sin( et + @)

u(t) A
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where

V., = the amplitude of the sinusoid

«w = the angular frequency in radians/s
@ = the phase




Sinusoids

A periodic function is one that satisfies v(t) = v(t + nT), for all t and for all
integers n.

vy =V, sin ot
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«  Only two sinusoidal values with the same frequency can be compared by their

amplitude and phase difference.
« If phase difference is zero, they are in phase; if phase difference is not zero,

they are out of phase.




Phase of Sinusoids

» The terms lead and lag are used to indicate the relationship between two
sinusoidal waveforms of the same frequency plotted on the same set of axes.
» The cosine curve is said to lead the sine curve by 90°.

» The sine curve is said to lag the cosine curve by 90°.

> 90 is referred to as the phase angle between the two waveforms.

»When determining the phase measurement we first note that each sinusoidal
function has the same frequency, permitting the use of either waveform to
determine the period.

» Since the full period represents a cycle of 360°, the following ratio can be

formed: A

: : A sin «
phase shift (no. of div.) g it
== . X 360° / A
I'(no. of div.) - L\
90° \ /




Phase of Sinusoids

> Consider the sinusoidal voltage having phase ¢, v(t) =V_ sin(at + @)

vy =V, sin wt

* v, LEADS v, by phase ¢.

vy =V, sin(wt + ¢)

* v, LAGS v, by phase ¢.

* v, and v, are out of phase.




Sinusoids

Example:
Given a sinusoid, 5sin(4nrt - 60°) , calculate its amplitude, phase,

angular frequency, period, and frequency.

Solution:
Amplitude = 5, phase = -60°, angular frequency = 4x rad/s, Period = 0.5 s,

frequency = 2 Hz.



Sinusoids

Example: Find the phase angle between 1, = -4sIn(377t + 25°) and
I, = 5c0s(377t - 40°). Does i, lead or lag i,?

Solution:

Since sin(wt+90°) = cos mt
I, =5sin(377t —40° +90°) =5sin( 377t + 50°)
|, =—4sin(377t +25%) =4sin(377t +180° + 25°) = 4sin( 377t + 205°)

therefore, 1, leads 1, by 155°.



Trigonometric ldentities

Graphically relating sine and

cosine functions.
> Sine and cosine form conversions.

I » + COS @/
it _9(-)1_

sin(AX+B) =sin AcosB xcos Asin B
cos(Ax=B)=cos AcosB +sin Asin B

Y
+ sin wt

sin(wt £180°) = —sin wt cos(at —90°) = sin awt
cos(wt +180°) = —cos wt

sin(wt =90°) = = cos wt P

cos(wt +90°) = +sin wt 180°

Acos ot + Bsin ot = C cos(wt — O)

Where

Y

C:\/AZ -+ B2 and H:tan_l E -+Sin wt -
A sin(ot +180°) = —sin wt




Phasor
« A phasor is a complex number

that represents the amplitude
and phase of a sinusoid.

* |t can be represented in one of
the following three forms:

a. Rectangular z =x+ jy=r(cos¢g+ jsin ¢)

Imaginary axis
A

1
L—» Real axis

b. Polar Z=r/¢

i z=rel?
c. Exponential wlREE

¢:tan‘1l
X




Example:

Evaluate [ (5+2)(-1 +j4)-5-60] and

(a)

(b

10+ j5+3.240°
-3+ 4

+10.30°

(5+72)-1+j4) = -5+j20-j2-8 = -13+]18

5/60° = 2.5 +4.33

(5+i2)(-1 +j4) — 5.260° = -15.5 +]13.67

[(5+i2)(-1 +j4)—5-,60]" = -15.5—j13.67 = 20.67.£221.41°

3./40° = 2.298 +1.928
10 +j5+3.240° = 12.298 +(6.928 = 14.115.29.39°
3+j4 = 5,126.87°

10+15+3.40° 14.115.229.39°
: = = 2.8232-97.48°
-3+14 32126877

2.823/-97.48° = -03675-32.8
10230° = 8.66 + 5
10+ 35+ 3.240°

-3+j4

+10230° = 8.293 +j2.2




Phasor

Mathematic operation of complex number:

1. Addition 2+ 2, = (X + %)+ j(Y, +Y,)
2. Subtraction 2 =2, = (% = %)+ J(Y1 = ¥5)
3.  Multiplication 2,2, =01, 2 ¢ + ¢,
4. Division %Z% L — ¢,
5. Reciprocal R
z
6. Square root J7 = ﬁ4¢/2
/. Complex conjugate . _, jy=r/—¢=re ¥

8. Euler’s identity e*¥ = cosg+ jsin ¢



Phasors

» A phasor is a complex number that represents the amplitude and phase of a sinusoid.
» Phasor is the mathematical equivalent of a sinusoid with time variable dropped.

» Phasor representation is based on Euler’s identity.

e =cosg + jsing Euler's Identity
cosg =Re{e’} Real part

sing =Im {e”’} Imaginary part

» Given a sinusoid v(t)=V, cos(wt+o).

v(t) =V_ cos(awt + ¢) = Re(V_e' ") = Re(V, e”e/) = Re(Ve'™)
V=V e =V /¢$=PHASOR REP.

v(t)=V_cos(ot+¢) < V=V Lo
(Time Domain Re pr.) (Phasor Domain Re presentation)
v(t) = Re{Ve!'} (Converting Phasor back to time)




v(t) =V, cos(wt + 6)

v(t) = Re
v(t) = Re

Rotating Phasor

Phasor as Rotating Vectors

Im (1) = Re(Ve /")
\

E (jot+6) Re O b
Vi | \J b
%

:Vm 4( j a)t -+ 9) ] Rotation at @ rad/s




Phasor

Transform a sinusoid to and from the time domain to the
phasor domain:

V(t) =V, cos(@h +¢) —— V=V /4

(time domain) (phasor domain)

Amplitude and phase difference are two principal concerns in the
study of voltage and current sinusoids.

Phasor will be defined from the cosine function in all our
proceeding study. If a voltage or current expression is in the form

of a sine, it will be changed to a cosine by subtracting from the
phase.




Phasor Diagrams

» The SINOR Vej“’tRotates on a circle of radius V,, at an angular velocity of o
in the counterclockwise direction.

Time Domain Re presentation Phasor Domain Re p.

V., cos(wt + @) V. 2@
V., sin(ot + @) V., Z¢—90°
Jim
| . cos(wt + ) | . £6 N
| sin(wt +6) | . £6—-90° 2
o,
Rotating Phasor Diagram
JIm
A - I, I
Yar Oy =LZ + ¢, g /,l
Vm b w “——~— Licos¢ Re
£ \'mc:)s 0,

— — Lcos(ottd) Re




Phasor

Example:

Transform the following sinusoids to phasors:
| = 6c0s(50t —40° A, v =-4sin(30t + 50°) V

Solution:

a. | =6£-40°A

b. Since —sin(A) = cos(A+90°);
v(t) = 4cos (30t+50°+90°) = 4cos(30t+140°) V
Transform to phasor =>V =4.140° V



Phasor

Example:
Transform the sinusoids corresponding to phasors

V =-10/30° V
| =j(5 —j12) A

Solution:
a) V(t) = 10cos(wt + 210°) V
b) Since | =12+ 5 =\/1227+524tan1(%) = 13/22.62°
I(t) = 13cos(wt + 22.62°) A



Phasor

The differences between v(t) and V.

. v(t) Is Instantaneous or time-domain representation
V Is the frequency or phasor-domain representation.

. v(t) 1s time dependent, V is not.

. v(t) Is always real with no complex term, V is generally
complex.

Note: Phasor analysis applies only when frequency is
constant; when it is applied to two or more sinusoid
signals only if they have the same frequency.




Differentiation and Integration in Phasor Domain

» Differentiating a sinusoid is equivalent to multiplying its corresponding

phasor by jw. _
v(t)=V_cos(wt+60)=Re [Ve""t]

% = eV, sin(et + 0) = —aV, cos(at + 0+ 90°)
:Re[ja)Vej”t} v < JoV
dt

> Integrating a sinusoid is equivalent to dividing its corresponding phasor by jw.

(Time Domain) (Phasor Domain)
v(t) =V cos(ot+¢g) < V=V Lo
v(t)=V_ sin(ot+¢) < V=V _~L¢-90°
dv
dt
J.th =

JoV

v
(4




Phasor

Example:

Use phasor approach, determine the current i(t) in a circuit
described by the integro-differential equation.
. : di
4i +8 j idt -3 =5005(2t + 75°)

Answer: I(t) = 4.642cos(2t + 143.2°) A



Phasor

« \We can derive the differential equations for the following
circuit in order to solve for v (t) in phase domain V..

60 Q
20 cos(4t—15°) 100mF =— 5H
2
Vo 5 Mo | 90y, = - MV at -15°)
dt? 3 dt 3

« However, the derivation may sometimes be very tedious.

=

Is there any quicker and more systematic methods to do it?




Phasor

The answer iIs YES!

Instead of first deriving the differential equation
and then transforming it into phasor to solve for V,
we can transform all the RLC components into
phasor first, then apply the KCL laws and other
theorems to set up a phasor equation involving V,

directly.




Adding Phasors Graphically

» Adding sinusoids of the same frequency is equivalent to
adding their corresponding phasors.

jIm




Example:

Find v(t) = v,(t) + v,(t)
V,(t) = -10sin(et + 30°) V,(t) = 20cos(at - 45°)

Let v=-10sin(a@t + 30°) + 20cos(@t — 45°)
Then, v=10cos(@t+ 30°+90°) + 20 cos(a@t — 45°)

Taking the phasor of each term
V = 10£120° + 20£-45°
V=-5+1866+14.14-114.14

V = 914-3548 = 10.66£-30.95°
Converting V to the time domain

v(t) = 10.66 cos(mt —30.95°)V




Example:

Find The voltage v(f) in a circut described by the integrodifferential
equation using the phasor approach.

dv
25 +5v+ IOIV dt = 20cos(5t - 30°)
Given that

dv
2E+ Sv+ IOIV dt = 20cos(5t-30°)

we take the phasor of each term to get
10
20V V+—V = 20£30°, o =35
j®
V[110+5-3(10/5)] = V (5§ +38) = 20£-30°
_20£-30°  20£-30°
5418  9.434/58°
V = 2.12/£-88°
Converting V to the time domain
v(t) = 2.12 cos(5t — 88°)V




Phasor Relationships for Circuit Elements

Resistor:
i |
—_— —-
+ +
v R V R
v=IR V=IR
(a) (b)
Wrin-phase

Capacitor:

i |
— —
o— o—
+ +
i ol ) \% ===
a_d o—
A | % l =7 CV
k7= C(ll J

(a) (b)

Inductor:
[ |
— —
- -
v L \Y% L
_ g di V = joLl
’}_Ldt J®
(a) (b)
WV leads I WVelags I

‘ VR

Ill'llr_ ‘

AN A
avavamn QY
-— Vs




Phasor Relationships for Circuit Elements

Resistor: Inductor: Capacitor:
’ I i 1 i 1
N — - 3 P —
o— oO—

+ * - + - +
v R \Y v [ \Y L % — ¢ Vv == G
— — - . T oy =,

v=IR V=IR g = L% V =jwll izC% I=j0CV

(a) (b) (a) (b) (a) (b)
Im A Im A Im A

A%

0




Phasor Relationships for Circuit Elements

Summary of voltage-current relationship

Element Time domain Frequency domain
R V = RI V =RI
L di
v=L— =
di V = JwlLl
¢ i = dv V= #
dt JoC




Phasor Relationships for Circuit Elements

Example:

If voltage v(t) = 6c0s(100t — 30°) is applied to a 50 uF capacitor,
calculate the current, i(t), through the capacitor.

Answer: I1(t) = 30 cos(100t + 60°) mA




Impedance and Admittance

 The impedance Z of a circuit Is the ratio of the phasor voltage
V to the phasor current |, measured in ohms Q.

Z :\T/ =R+ jX
where R = Re(Z) Is the resistance and X = Im(Z) is the

reactance. Positive X is for L and negative X is for C.

» The admittance Y is the reciprocal of impedance, measured in
siemens (S).

1 1

Y::
L V




Impedance and Admittance

Impedances and admittances of passive elements

Element Impedance Admittance
R 1
_ Y = —
| . 1
_ Y = ——
Z = JwL ol
C Z = N Y = JaC




Impedance and Admittance

i w=0;Z=0

Short circuit at dc

L
—n >
Z = jolL L. :
Open circuit at ) —> 0, Z —> OO
high frequencies
(a)
a— . a— w=0Z >
C Open circuit at dc
K -
7 = 1 O O
= Ja)C Short circuit at a) —> oo’ Z = O

high frequencies



Impedance and Phase Angle

:
§

Circult Elements Impedance Z Phase Angle ¢
R
0:7
—MNN\—e Z=R m———
R
Vi
L
—"Y V"¢ =X, +90
|
C I
Ve
R L
—AMNN—"""—a Z=vVpg%+ XLE Positive, between 0° and 90°
R Cc
—\N\N\— 2=+ Xci Negative, between-90° and 0°

Qo
=
o}

Negative if X~ > X
Positive if X < X;

Z= VR + (X, - X



Impedance and Admittance

After we know how to convert RLC components from time to
phasor domain, we can transform a time domain circuit into a
phasor/frequency domain circuit.

Hence, we can apply the KCL laws and other theorems to

directly set up phasor equations involving our target variable(s)
for solving.




Impedance and Admittance

Example:
Refer to Figure below, determine v(t) and i(t).

v, =5c0s(10t) (i) 02H < »

ANSwers:
I(t) = 1.118cos(10t — 26.56°) A;
v(t) = 2.236¢0s(10t + 63.43°) V




Example:

Calculate v(t) and i(t) in the circuit given.

I 40

-
.illll.. Id ..lﬁlllll'lr

L+

=

n=s5sin1r @) z 02HZ v

—_—

I

Y 540° @ 10

L= 4+l = 4+)2

520°  5(4-)2)
4+ )2 16+ 4
Vo gl D= 21 = (22901 118.2-26577) = 2.236..63.43°

1=V, 7 | =j0.5 = 1,118.2-26,57°

Therefore, vit) = 2236 sin{ 101 + 63.43%) V¥
ey = LLIS sin{10i -~ 26.57°) A




Kirchhoff’s Laws in the Frequency Domain

 Both KVL and KCL are hold in the phasor domain or more
commonly called frequency domain.

« Moreover, the variables to be handled are phasors, which are
complex numbers.

« All the mathematical operations involved are now in complex
domain.



Impedance Combinations

« The following principles used for DC circuit analysis all
apply to AC circulit.

» For example:

a. Vvoltage division
current division
circuit reduction
Impedance equivalence
Y-A transformation

®oo0o



Impedance of Joint Elements

» The Impedance Z represents the opposition of the circuit to
the flow of sinusoidal current.

' 2|r?F 02H
,_V o J'X _ O N | N ——
| | | Z | S3Q §8Q
=Resistance + | x Reactance — 10 mF
=|z| 26 .
X

Z|=VR?+X?  O=tan’ -
R =|Z|cosd X =|Z|sing

» The Reactance is Inductive if X is positive and it is Capacitive
If X IS negative.



Impedance Combinations

Example

Determine the input impedance of the circuit in figure below at

w =10 rad/s. .
2mF  20Q 2 H

| —AL

. - 4 mE 50 Q

Answer: Z,, = 32.38— j73.76 Q



Impedance as a Function of Frequency

» As the applied frequency increases, the resistance of a resistor
remains constant, the reactance of an inductor increases
linearly, and the reactance of a capacitor decreases nonlinearly.

A X (kD)

A X (k) If
C = 001 uF

Increasing C
C =003 /.,LF

| 1 1 1

0 \ 5 10 15 20 £ (kHz) 0 S10 15 20 f(kHy
X, =0Qatf = OHz



Application of KVVL for Phasors

» The Kirchoffs Voltage Law (KVL) holds in the frequency domain.
For series connected impedances:

! Z Z, Z)
— - — i
+ \ /A + \ + Vi~
v
Zcq V -
l,=—=24+7Z,+---+Z, (Equivalent Impedance)

€q I

» The \Woltage Division for two elements in series is:




Admittance of Joint Elements

» The Admittance Y represents the admittance of the circuit to
the flow of sinusoidal current. The admittance is measured In

Siemens (S)
VS
L V

= Conductance + jx Suseptance=|Y|£6

1 ~ R-jX
R+ jX R*+ X?°
R X

G = B=-
R? + X R? + X2

Y=G+ |B=

2 mF

0.2H

I
=1

Y I

—V

8 Q

10 mF

O




Parallel Combination for Phasors

» The Kirchoff’s Current Law (KCL) holds in the frequency domain.
For series connected impedances:

i w] “12 ¢IN
I(D \Y Z, |:|Z7 Zy
-
|
Z quzzl :\L/:Y1+Y2+---+YN :ijLiJr-.-+i (Eqiv. Admitance)

eq 1 2 N

» The Current Division for two elements is:

+ L 7
I (D \Y Z, Z, 1 Z, + 2,
— Zl
_ ? Z,+Z,




Application of Current Division for Phasors

~

1

I, +°

0
I, +
500 O 12

0.05/0° A —j500 Q == V
j1000 N
L QO
. (R+ jolL) - 1
5L = ! - JjaoC -
= (500.“ 1009) 0.05£0°| ], = o 0.05£0°
500+ ;j1000— 7500 “ 500+ 71000— 7500
1, =0.079.£108.4° A I, =0.03535£-45° A



Example: Calculate v (t) in the circuit given.

Let
and

In the frequency domain,

the voltage source1s V, = 10.£75° 10 cos (107 + 75°) (£

the 0.5-H inductor is joL = j (10)(0.5) = j5
i e 1 :

the %-F capacitor 18 o = T10)(1/20) = -2

Z, = 1mpedance of the 0.5-H inductor in parallel with the 10-Q resistor

Z; = impedance of the (1/20)-F capacitor
: (10)35) : .
Z1=10)|j§ =——==2+j4 d Z; =42
1 1] 10+ 5 ] an g =
Vo - Z2/(Zl +Z2) V.)
- (10£75% = gy e oYl . 7.071.£-60°
S 5 A £ R /P2 L o

vo(t) = 7.071 cos(10t— 60°) V

8 o+



Example: Calculate Z;, of the circuit at @ = 10 rad/s

Let

= impédance_of the 2-mF capacitor in series with the 20-Q resistor
impedance of the 4-mF capacitor

Z>; = impedance of the 2-H inductor 1n series with the 50-Q resistor

SIS
o

1
Zhn =20+4——=20+- - =
1C 1(10X2x107)
7, = 1 B 1 _ 95
27 JaC  ja0)@dx10°) 3 |

Z; = 50+ joL=50+j(10)2)=50+j20 —

= 20— {50

Zin=2+ || 2 =2+ 22 23] (Z2+ Z3)
. 12

Zio = 20§50+ I2XC0+120) _ o 564 12382376
-125+50+ 320

Zm - 32-3§- i73.76 ‘z




v,(t) = 35cos(10°t+30°)

Find
(a) Angular frequency in radians per sec
(b) Impedance of R in €2

(c) Impedance of L in Q2
(d) Impedance of C in €2 Graph 1,(t) as a
(e) Driving point impedance in €2 function of time

(f) Driving point admittance in S
(g) Phasor voltage and current
(h) Find particular response 1,(t)



Example: Cont’d
I 50Q  —j100Q 250

o e S
+
35/30°V
b ; Vs 1 :
Driving Point Impedance Z=—=R+——+ joL
/ joC

Z =50— j100+ j25=50— j75Q=90.14/—56.14°Q
Driving Point Admittance
1 1

== =0.011£56.14° S
Z 90.14£-56.14°




Example: Cont’d

A

Phasor Voltage: Vs =35230"
2 35./30°

Z 90.14/—-56.14°
=0.388.£(30° +56.14°) = 0.388./86.14°

Phasor Current: f —

Particular response (called the steady-state response):

i,(t) = 0.388cos(10°t +86.14°)

Note that current leads voltage by 56.14° which is Vi

N

—— voltage

current

//




Sinusoidal Steady-State Analysis

«  Basic Approach e e 2
*  Nodal Analysis e | v ® wer@® ™) Lo M
*  Mesh Analysis o . 9w @ mos
*  Superposition Theorem s0s (1) =-po
e  Source Transformation |
«  Thevenin Equivalent Circuits 1(4_
10cos 20V (2) (DZSM’UA T OLF @5V vea®) =B “” oo 3120
| |
L

AV
2 A A
-j5Q = jloQ 2/-90° A

Il
|
J
[3%]
B
L amw—!
'

5V 10/0°V
(a) (b) (c)



Basic Approach

Steps to Analyze AC Circuits:

1. Transform the circuit to the phasor or frequency domain.

2. Solve the problem using circuit techniques (nodal analysis,
mesh analysis, superposition, etc.).

3. Transform the resulting phasor to the time domain.

Solve
variables in Freq

Time to Freq Freq to Time




Nodal Analysis

Example: Using nodal analysis, find V, and V, in the circuit of

figure below.

100 .. o g
L2
_ILI o
4,430° ifj an ?;f‘:zon Q}DSA
1 +
—,fllﬁllﬂ y, J10Q p
e
— —
4,£30° -f“ félﬂﬂ L%‘Zzﬂn Qj 08A
=
—J 1 V1 B 3.468 — j2
-2 2+)LV jlé

_Jlltljlﬂ 7, {}EE v,
” VER
e = = "
14300 () 2100 S 200 [t,, 08A
—=
430 - n -
- LS RIS .. > 4/—30° = 3.468 — 2
—10 10 710
og=2, 2" 16 = 2V, + (2 + j)V
) o * = —/ o 9
20 j10 J ! J)72



Mesh Analysis

Example: Find I in the following figure using mesh analysis.

2,/0° A

—52 Q 6Q
I
|

MA—

l(,l
4 Q @ 10,/30° V
56 ?J ) /30°

Answer: |, =1.194/65.44° A



Superposition Theorem

When a circuit has sources operating at different frequencies,

« The separate phasor circuit for each frequency must be
solved independently, and

» The total response is the sum of time-domain responses of
all the individual phasor circuits.

2 H 1 40
0 VAVAVAYA VWA
+ -
10 cos 2: V () @) 2sinsta == 01F (F) 5V

1 Q 4Q Jj4Q  1Q 4Q I 1 Q

A
* 41 B + V’y - + V*\ -
5V 10400V =58 =— i10Q é CD 2/90°A == -j2Q %49

(a) (b) (c)




Superposition Theorem

Example: Calculate v, in the circuit using the superposition theorem.

8 Q
 AAAA

+
30sin 5tV i) Yy

=02 F

1 H

<+ ) 2 cos 10r A

Answer

V, = 4.631 sin(5t — 81.12°) + 1.051 cos(10t — 86.24°) V



Source Transformation

—0 d O d

O b




Source Transformation

Example:

Find |, in the circuit of figure below using the concept of

source transformation.

20 j1Q
AW—TTT

1090 A(D)

S0
JSQ %19

I, =3.288£99.46° A




Thevenin Equivalent Circuit

Linear
circuit

Q

Thevenin transform

@

(a)

Z'lh

o

(b)

Q




Thevenin Equivalent Circuit

Example: Find the Thevenin equivalent as seen from the load side.

G 50 4Q .!’_S_YSZ
AN T—o0 AW L LRI N——
;’}: LY Loy L < 80
-  10/0°V (ﬁ) j_ Z,
= —j6 L) T )
) - , L -jb Q
ia) e N '
7 = g o 48 —j6) _ ,
m =J5 + 4|8 - j6) = j5 + ——— = 2933 +j44670
40 jsQ
) 250 - 8 — j6
v ) Vi Vin = 2 (10) = 7.454/—-10.3°V

L _i60 4+8—j6

(b)



Thevenin Equivalent Circuit

Example: Find the Thevenin equivalent as seen from the load side.

40Q 308

‘_A\/IV'A\/\J |

~

150,/30° V G) j20Q3 IR,

- = 9.412 + j22.35 Q)

vh f‘v

720040 — j30)

L T T A =20

Z, = (40 — j30) || 20 =
i20

j20 + 40 — j30

Vi, = (150/30°) = 72.76/134° V



Thevenin Equivalent Circuit

Example: Find the Thevenin equivalent at terminals a—b of the

circuit below. 6Q 20 a b
— AM— o
30,20° V ’_r) L _j40 10 Q

Z, =12.4-j320Q
Vo = 18.97£-51.57°V



Topic 2 - AC Power Calculation

Instantaneous and Average Power
Maximum Average Power Transfer
Effective or RMS Value

Apparent Power and Power Factor
Complex Power

44— Power

\,\\/\/

\/ C'u rrent

Conse rvation Of AC POWGI’ Plot of the Power of Instantaneous Voltage,
Power Factor Correction

Current & Power

Power Factor

Q, Reactive Power




Instantaneous and Average Power

« The instantaneously power, p(t)
p(t) = v()i(t)=V_I_cos(wt+6,)cos(wt+6,)

:%lemcos (6, _ei)+%vmlm cos 2wt+0, +6)

Constant power Sinusoidal power at 2m

The instantaneous power p(t) is composed of a constant part (DC) and a time
dependent part having frequency 2o.

pir) A

/%Vn,/,,, cos(0,—0,)

|
Sd W Y

p(t) > 0: power is absorbed by the circuit; p(t) < 0: power is absorbed by the source.

|
A
3



Instantaneous and Average Power

» The average power, P, is the average of the instantaneous power
over one period.

1 T 1
P=_ tydt=—-V_1_cos(6, -6
T Jo p@dt= SV, 1, cos(6,-6)

. Pis not time dependent.
2. When 0,=0,, it is a purely
resistive load case.
____________________________________________ 3. When 0,— 0, =+900, itis a
T/Wm’m c0sty %) purely reactive load case.
J 1 4. P =0 means that the circuit
absorbs no average power.

plr) A

T




Instantaneous Power

p(t) =v(@)i(t)=3V, I cos(@, —8)+sV I cos2at +6, +6)

v(t)=120v2 cos(377t+60°)  i(t) =242 cos(3771+30°)



Instantaneous Power

D) =1V, 1, C05(0, ~8) + 1V, 1, Cos(2et +6, +6) = p,(0)+ P, 1)
L p;(t) + p,(t)

2494 [

oy =60°
¢] - 300
=900 1
pl(t) =§lem COS(‘PV _¢I)
I,= 2442 1
P2 ()= _lem COS(ZCOI‘+¢)V +¢I)




Resistive Ci

rcuit and Real Power

A
~4 T-_)
Pr
A o P
Power E {
delivered to| [___ .._-_n_e{‘i).’..{_ _____
element by dissipated!
source :
o‘—-.‘hl
"‘ - — ‘.~-
e - t-.~~
0 t
Power
returned to | =
source by
element
Y




Inductive Circuit and Reactive Power

Power
delivered to
element by
source

§=90°

Power
returned (o
source by
element




Capacitive Circuit and Reactive Power

'\
-t T2 >
Power
delivered to o e————
)
element by f -Pc
source
; v Energy v Energy
e \ absorbed / absorbed
' PR ”
r M .- Y Pl Sug ke Y 'S
V~\§ ’O" “" ‘ Q~. ‘ ~\~ "" "O '8 (u’
S - - ~. - 3
---- pary - .""' Seee - ~.~-----”_ =
Energy Energy
Power returned ~VI returned
returned to
source by
clement ¥| S - 3
< Tl >




Instantaneous and Average Power

Example:

Calculate the instantaneous power and average power
absorbed by a passive linear network if:

v(t) = 80cos (10t +20°)
1(t) = 15sin (10t + 60°)

Answer: 385.7+600cos(20t —10°)W, 387.5W



Average Power

» The average power P is the average of the instantaneous power over

one period .
p(t)=v()i(t) Instantaneous Power

1 e7
P= ?JO p(t)dt Average Power

v(t)=V_cos(wt+6,) i(t)=1_cos(wt+86)

_l T _]_ T, 1 T
P= ?jo p(t)dt = ?J‘O sVl cos(d, — 6 )dt +?J‘O iV _1_cos(2mt + 6, +6)dt
P=2V I 6’6?1Tdt 1VI1T 20t + 0 +6,)dt
=7Vl cos(6, - i)?jo +3 mm?JOCOS(w+ ' +6)

sV, 1, cos(6,-6,)+0 (Integral of a Sinusoidal=0)
P=2V_I_cos(6,-6)

5 :%Re[VI*] :%lem cos(é, —6.)




Average Power

Example:

Acurrent | =10 ~30° flows through an impedance.

Find the average power delivered to the impedance.
Z=20/—-22°Q

Answer: 927.2W



Average Power

Example: Find the average power absorbed by resistor and inductor. Find the
average power supplied by the source

JQ

M
8£45° V C’_D @ g i1Q

8.45°
3+

B

=233.226.57°

Fortheremistor, I, =1=253.22657 WV, =31=759.22657
P. = _l_\r I =
. S 2 m m ~

For the inductor, I, =2.53.226.57°, V, = )1, =2.53.4(26.57°+90°) = 2.53/116.57°

(2.53)(7.59) = 9.6 W

0D | e

1
R = ;(2.53)2 cos(90%) = 0 W
The average power supplied 1s
1
P= 5(8)(2.53) cos(45°-26.57°)= 9.6 W




Average Power

Example: Calculate the average power absorbed by each of the five
elements in the circuit given.

8O 40

— T

v () @ i m (Do

A0+ (8- )1, + (-2, =0
(4—pI, —jl, =20 (b

For mesh 1.

For mesh 2.
S20+ 4 =201, + (231, =0

[

)

In matrix form.

e -qhﬂ 20




Average Power

L=
|
[

Fid. A =10+ j20 A, =10+ j60

A = & A, " o
| = ——=53253.14" and I, =—==13.6Z17.11°
A A

For the 40-V voltage source.
V, = 40207 I, = 5253.14°

-1
P = T{-‘-H]HS]ICU:%(—EE. 147y = - 60 W

For the j20-V voltage source,
V, = 20.290° 1, =13.6Z17.11°
Po= %{EE]}{I 3.6)cos(90°—17.117) = -40 W
FFor the resistor,
[=|1]=5  v=g|1,]|=40
I
P = E{;H}}f:?] = 100 W

The average power absorbed by the inductor and capacitor is zero watls.



Effective or RMS Value

@

R

a) AC circuit

I eff
_

§R

b) DC circuit

The total power dissipated by R is given by:

1

T

R

-

T h
T

Ieff = \/ % jolzdt = Irms

The rms wvalue is a constant itself
depending on the shape of the function i(t).

i‘dt=12 R

rms

P jT i2Rdlt =

0

Hence, I ¢ Is equal to:

which

» The EFFECTIVE Value or the Root Mean Square (RMS) value of a periodic

current is the DC value that delivers the same average power to a resistor as the

periodic current.



Effective or RMS Value

(1)

MW

v(t) i)

a) AC circuit

—_—

vcff —_ § R

b) DC circuit

R 17,2 2 | 2 .71
IRms = _J. Im cos” wtdt = LJ‘ —(1+ COS 2a)t)dt =M
T J0 T Jo2 \/E

The rms value of a sinusoid i(t) = I .cos(at) is
given by:

The average power can be written in terms of the
rms values:

P= %Vm I ;m €0S (8, —0;) =V |1 COS(0, —6;)

» The average power for resistive loads using the (RMS) value is:

2 R = VRms2

I:)R = IRms R




RMS Value

» Example: Find the RMS value of the current waveform. Calculate the
average power if the current is applied to a 9 Q resistor.

i(1) A

At 8-4t 1 _,
. 4t O<t<l / //
1(t) = 4

8—-4t 1<t<?2

0
o Lot o 10 1o 2 2
2=z dt_a[ [} @2 de+ [ -4t dt}

3

2 _E L2 2 _ 2 2 o1 o U2 16
|rms_2“0t dt+L (4—4t+t )dt} e =8| <+ 4t-20 42 2|=2

3
/16
Irms = ? = 2.309A P= Ir2msR = (%)(9) = 48W



RMS Value

Example: Find the RMS value of the full-wave rectified sine wave.
Calculate the average power dissipated in a 6 Q resistor.

() A
8 -
»
0 ™ 27 3w t

T=n,v(t)=8sn(t), O<t<n

V2o o= %J;T vidt = %f{ @sin(t)? dt V2, = %fo%l 1 - cos(2t)] dt = 32




Apparent Power and Power Factor

Apparent Power, S, is the product of the r.m.s. values of voltage and
current.

It is measured in volt-amperes or VA to distinguish it from the average
or real power which is measured in watts.

P =V |1 COS (0, —0;) = Scos (0, —6;)

/ N )
Y

Apparent Power, S Power Factor, pf

Power factor is the cosine of the phase difference between the voltage
and current. It is also the cosine of the angle of the load impedance.




Apparent Power and Power Factor

Purely resistive ev_ ei =0, Pf=1| P/S=1,all power are
load (R) consumed
Purely reactive ev_ ei = 4+90°, P =0, no real power
load (L or C) pf = 0 consumption
Resistive and ev_ ei >0  Lagging - inductive
reactive load 0-0.<0 load
(R and L/C) v - Leading - capacitive
load

P=2V_I_cos(@, —-6)=

Vol COS(6, —6)

Rms " Rms

pf =g= cos@, —6)

S==V_1_=V. I
2

1

Rms " Rms




Power Factor

Example: Calculate the power factor seen by the source and the

average power supplied by the source
10 Q 8Q

AAAA
— \ AN\ —
LA A | YVYY

40,/0° V rms Cj) 2 j4Q 6 Q

The total impedance as seen by the source is
(148 - J6)
8—)2

Z=10+4|(8-36)=10+ Z =12.69£20.62°

The power factor is
pf = c0s(20.62°) = 0.936 (lagging)

Vi d020°

™ Z 0 12.69£20.62°
The average power supplied by the source 1s equal to the power absorbed by the load.

P=1% R =(3.152)*(11.88) =118 W

or P=V,1..pf =(40)3.152)X0.936)=118 W

=3.152./£-20.62°

rms




Complex Power

» The COMPLEX Power S contains all the information pertaining to the
power absorbed by a given load.

»Complex power S is the product of the voltage and the complex conjugate
of the current:

—>

0 V=V_/0, 1=1_,0,

[.oad

o ZVI'=Vv_ | __/0,-6

@)




Complex Power

— 1

S==VI'=V.__1__/0,-0,

ms -~ rme

- 2
Load
L’_ —=S=V,; l,s €05 (0, —0,)+j V. | Sin (6, —6,)

o J o J

e e
S= P+ Q

P: Is the average power in watts delivered to a load and it is
the only useful power.

Q: is the reactive power exchange between the source and
the reactive part of the load. It is measured in VAR.
« Q =0 for resistive loads (unity pf).
» Q <0 for capacitive loads (leading pf).
« Q > 0 for inductive loads (lagging pf).




Complex Power

+ —=S=V,__|_cos(0,—-0,)+jV, . |__sin(, —0,)
L()Zld. \ / - -

v 7 e g

) ' S= P + ] Q

O

Apparent Power, S = |S| = Vrms*Irms = \/ P? + Q2
Real power, P=Re(S)=S cos(6, — 6;)
Reactive Power, Q =Im(S) = S sin(6, — ;)

Power factor, pf=P/S =cos(f, — 6

 Real Power is the actual power dissipated by the load.

e Reactive Power is a measure of the energy exchange between source and
reactive part of the load.




Complex Power

» The COMPLEX Power is represented by the POWER TRIANGLE similar to

IMPEDANCE TRIANGLE. Power triangle has four items: P, Q, S and 0.

|

—
C - -
+ :>S:Vrms Irms COS(ev_ei)+JVrrrs Irms Sin (ev_ei)
N - % - /
v g N N
S= P + Q
- Im A
O
A
S +Q (lagging pf)
S 0 VA X N6 =8 >
0,-0, P Re
e e
S I
p R —Q (leading pf)
y

Power Triangle

Impedance Triangle

Power Factor




Real and Reactive Powers

» The REAL Power is the only useful power delivered to the load.

»The REACTIVE Power represents the energy exchange between the source
and reactive part of the load. It is being transferred back and forth between

the load and the source

»The unit of Q is volt-ampere reactive (VAR)

S=P+ jQ=Re{S}+ jIm{S}
=Real Power+Reactive Power

S=1°, Z=1°, (R+jX)=P+ jQ

P VRms Rms COS(@ 0) Re{S} — I 2Rms
Q VRms Rms Sln(e 9) T Im{S}_ I 2Rms




Complex Power

Example: Two loads are connected in parallel. Load 1 has 2 kW, pf=0.75
leading and Load 2 has 4 kW, pf=0.95 lagging. Calculate the pf of two loads
and the complex power supplied by the source.
For load 1.
P, = 2000 pf =0.75=cosh, ——> 0, =-41.41°

¥
I |

P, =5cos0, —— §, = = 26066.67

cost,
Q, =5,sinb, =-176.83
S, =P +1Q, = 2000~ j1763.85 (leading)
For load 2,
P, =4000., pt=095=cos0, —— 0,=18.19°
I)

¥ -
— = 4210.53
cost,

£

Q, =8,sn0, =1314.4
S, =P, +10Q, =4000+ j1314.4  (lagging)

S, =

The total complex power is
S=8,+8, =6-j0.4495 kVA
¢ [ GOOO
11 = f—
" s| eoteas

= 0.9972 (leading)




Complex Power

Example: The 60 Q resistor absorbs 240 Watt of average power. Calculate V
and the complex power of each branch. What is the total complex power?

20 Q
W [ zu Q

2300 2 ;2{15: by =

Vv @) ) | (30-j10) v (60+j20) Q
i
— 100 2600
. P240
P=LR —— IE:EZWZ-l I,=2 {(rms)
)

V, =1,(60+j20)=120+ j40

30 ||[]

V=201+V_ =104+ j48) + (120 + j40)
V =224+ |88 = 240.67£21.45° (rms) V = 224+ 188 = 240.67£21.45° (rms)




Complex Power

[For the 20-€2 resistor.,
V=2001=204+ 48 =114.54 224 .8°
1=52+)2.4=5727224.8°

S=VI' =(114.54224.8°)(5.727£-24.8°)  S=656 VA

For the (30 — 110)-Q impedance.
Vo =120+ j40 =126.5£18.43°
I, =32+)24=4236.87"

S, =V I =(126.5218.43°)(4£-36.87°) S, = 506.2-18.44° = 480 — j160 VA

For the (60 +j20)-€2 impedance. 1, = 2.20°

S, =V_ I, =(126.5218.43°)(2£-0°) S, =253/18.43° = 240+ j80 VA
The overall complex power supplied by the source is
S, =VI' =(240.67£21.45°)(5.727 £ - 24.8%)
S, =13783£-3.35°=1376- j80 VA




Complex Power

Example: A 120-V,,, 60-Hz source supplies two loads connected in parallel, as
shown below.

(a) Find the power factor of the parallel combination.

(b) Calculate the value of the capacitance connected in parallel that will raise the
power factor to unity.

© | |
Load 1 Load 2
24 KW 40 kW
pf=0.8 pf=0.95
lagein lagoin
Solution: g% g ggl g
O
Chapter 11, Solution 74.
1 0 1(0.8)=36.87° S B 2 30 KVA
e = COS )= 23087 N = = =l kKVy
@) 1 = €05 7HU-0) ’ : cost), 0.8

Q, =S, sin6, = (30)(0.6) = ISKVAR S, =24+ jI8kVA

0, =cos(0.95)=18.19° S, =——=——=42. 105 kVA
- - cost, 095

Q, =S,sin0, =13.144 KVAR S, =40+ jI3.144 KVA




Complex Power

B2 Skva
cosO, 0.8

Q, =58,5m0, =(30)0.6) =18 kVAR §, =24+ jJI8KVA

0, =cos(0.8)=36.87° 8, =

P, 40
cosf, 0.95

Q, =S,sin0, = 13.144 KVAR S, =40+ jI3.144 kVA

0, = cos™(0.95)=18.19° K, = 42.105 kVA

S=S,+S, =64+ 31.144 KVA

| =25.95"  pt=cosb= 0.8992 (lagging)

Q. = P[tan0, — tan0, | = 64] tan(25.95%) — 0] = 31.144 KVAR

Q. 31144 S 74 mE
= =374 m
oVi o (2aN60)120)  e—

'S
I



Use of Power Triangles

20 kVA

16 kVAR

sy 55887
\ 63.13°
1

[
: —6 kVAR +
10 kVA
12 kW

S=P+)JQ=S +S,=(F+PR,)+ J(Q +Q,)

22.36 kVA
10 kVAR

| 26.565°

o |

20 kW




Conservation of AC Power

» The complex real, and reactive powers of the sources equal the
respective sums of the complex, real, and reactive powers of the
individual loads.

Rt i L D =

v @) z, Z; v @®

For parallel or series connection:

*

S=VI, +V,I, +---+ VI
S=S,+S, +--+S,




500/0

/,‘

p

|

N\

7

0

Exambple of Combplex Power Balance

n e s
l,on‘dl | ’ Load 2 ‘ l.o."‘ld.? \ VS C_D —T — —
L.oad 3

Load 1 Load 2 -
303 00 2 400Q 2 400Q

15.65Q [j165.8Q 1754082 =-i530.5Q 95712

7, = 1245.65 Z,-80-j1658 | Z, = 400+ 571
=13.26/25.21 Q =184.1/-642Q =697/-55 Q
Pf, = cos(25.21) Pf, = cos(-64.2) Pf, = cos(-55)
=0.9 lag =(.43 lead =0.57 lead




Example, cont’d

— |

-+

500/0 CD Load 1 Load 2 Load 3

I = il . 37.7£-2521°=34.11- j16.06
13.26.25.21°
L = 200£0 =272/642°=1.18+ j2.45
2 184.1£-64.2°
L= il 0.72£55°=0.41+ j0.59
697/ —55°

I=1,+L,+1,=357-j13.02= 38£-20°4
Combined Pf= cos(20) = 0.94 lag



Example, cont’d

— I

L

Load 2

[Load 3

500/0 <> Load 1

S, = VI; =500037.7.£25.21° = 18850£25.21° =17055+ j8029 VA

S, = VI, =50002.72£-64.2°=1360£ —64.2° =592~ j1224VA

gt |

S, = VI; =50000.72£-55°=360£~-55°=207- j295VA

S=§,+8,+8, =17854 - (6510 = 19000£—20° VA

Check: S=VI" =500038.—20°=19000/—-20° VA

Complex power is Conserved




Power Factor Correction

Power factor correction is the process of increasing the power factor
without altering the voltage or current to the original load.

—
O O
+ ‘ I, + ‘ I, * I
Vv I Inductive A% Inductive | : =
' S ! load load .
O i O .

(a) (b)

Power factor correction is necessary for economic reason.




Power Factor Correction

<Y

o
L ¥ L |k
| - Inductive Vv Inductivcs o~ C
i load load -
0
(a) (b)
&
Qc = Ql - QZ
% =P (tan 0, - tan 0,)
= 2
' =oCV rms
O,
o |\
2
vy =Ptan 0, OV
P=S,cos 0, Q,=Ptan,

_ P(tan6,-tan0,)

2
oV,




Power Factor Correction

» The process of increasing the power factor without altering the voltage or
current to the original load is called power factor correction.

P.=P,=P Real power stays same
P=Scosd Q =S5sing =Ptand, Q,=Ptand,

Qc :Ql _Qz — P(tan 6)1 —tan 62)

Q. P(tang —tand,)

2 2
a)vrms a)vrms

C =

» The capacitance value needed to change the pf angle from 6, to 6, .

« Similarly the inductance value needed to change the pf angle from 6, to 6,
for a capacitive load.

2
L — Vrms
@0Q,




Power Factor Correction

Example: Find the value of the capacitance needed to correct a load of 140 kVAR at
0.85 lagging pf to unity pf. The load is supplied by a 110 Volt (rms), 60 Hz line.

l}ll = (.85 =cos) ——» 0O=31.79

() 140

() =Ssinl —— S= = —=2065.8 kKVA
2= 58 5in0  sin(31.79°)
P=5Scos0=22593 kW
For pt =1=cos0, —— 0, =0°
Since P remains the same.
h ]
P=P =S, cos0, —> § =——=225093
cost,
Q, =S, sinb, =0
The difference between the new Q, and the old Q is Q..
r g 72 — I'-H]'KI'[JI
Q. =140 kVAR = CV_ (= — — = 30.69 mF
(270601 10)°




Power Measurement

The wattmeter is the instrument for measuring the average power. Two coils are used,
the high impedance Voltage coil and the low impedance Current coil.

|
M i i
i i + —_—

Current coil
& +
T o—WW—j &
+ I
- I | | H z,
* T~ Voltage coil é 5
o— T
A
A y
i Equivalent Circuit with load

O O
+

The basic structure
If v(t)=V,_ cos(at+86,)and i(t)=1_,cos(at+86)

Wattmeter measures the average power given by:

P = |V,o||lms| cOS (0, —6,) = 1V, 1, cos(6,—6,)

L



Power Measurement

Example: Find the wattmeter reading

The wattmeter measures the average power
from the source

4+

4Q

-j20

Let Z,=4-)2
(12)(j9)
12+ 19

120/30° V rms Cj-_) »

Z,=12||{9= ~ 432+ j5.76

+

jIQ =

Z=27 +Z,=832+j3.76=9.13,24.32°

|V a2op
S 903298320

S=VI =1577.2224.32° kVA

P=|$|cos6=1437.2 kW




Maximum Average Power Transfer

Linear
circuit

a) Circuit with a load

Z Th

/

—_—

==

" @

0]

Y
J

Loy = Ry + 1 X4,

ZL: RL+ jXL

The maximum average power can be
transferred to the load if

Z;

b) Thevenin Equivalent circuit

If the load is purely real, then R, = R, + X2, = |Zp]

Z, =Ry - Xy =271y



Maximum Average Power Transfer

* Write the expression for average power associated with Z: P(Z)).
Z =R+ XL

Set % — (): Solve for Ry,

5[ it ﬁ — () “'u }]'ﬂ'- tor J‘:L

I"_-}..-'YL
I — ‘*ﬁrth
21 + Z1h
— Im—;H:’
o |V,
" L[' Rp, + Ry :'2 + (X1 + X7, :'2]
b DR Vil Ry /2
2 (Rp+ Rpp)?+ (X + Xpp)?
P P
X . L Th ”RL L UTh




Maximum Average Power Transfer

Example:
For the circuit shown below, find the load impedance Z, that absorbs
the maximum average power. Calculate that maximum average power.

| |

"y

8Q 2 @24 =50 Zs

| |

—j4 Q j10Q

ANnswer:
Z, =3.415-)0.7317 Q
P . =1429W

max



Maximum Average Power Transfer

SOIULION:  ye firgt obtain the Thevenin equivalent circuit across £, . Lo 13

obtained from the circuit in Fig. (a).

4Q  jlQ
Zl]l
80 § 50 —
#
(a)

(5)8+ 16)

13+ 16

L, =5[ 8=+ ]l0)=

= 34154 50.7317



Maximum Average Power Transfer

V5, 1s obtained from the circuit in Fig. (b).

—j4 © jloQ
Fal
1< (D I .
+
F 3
w0E (D) seE v
L ]
(b)
By current division.
8 j4
(= ' 2
8 4+ jl0rs
1O)8 — j4
Vv, =51=—22 P g55..51.34°

13+ j6

Z, =7, = 3.415-j0.7317Q

) B | Vi |_ B (6.25)°
max o 8R, (8)(3.415)

= 1.429 W




Maximum Average Power for Resistive Load

» When the load is PURELY RESISTIVE, the condition for maximum power transfer is:

RL - \/RTh2 + XTh2 - ‘ZTh‘
»Now the maximum power can not be obtained from the P

nax formula given before.

» Example: Calculate the resistive load needed for maximum power transfer and
the maximum average power.

80 Q 1609
120/60° v @ Q3 ==-30Q 3R
Solution: We first find Z4, and Vy, across R .
, (OO =130y
et L, =80+i60 and Z, =90/ (-j30)= : =9(1-j3)

90— 30

(80 + 16019~ 127) o
L. =1L ||L, = . —— = |7.181— 124.57 Q2
Th 12, 80+ 60 + 9~ 27 .




Maximum Average Power for Resistive Load

| Z, (91— j3) .
Vi = ———=—(120£60°) = (120.260°)

Z, 7, 891 i33
V., =35.982-31.91°

R, =|Z, |=30Q

The current through the load is
Vi 353.982-31.91°
L., +R, 47181 j24.57

I = = 0.6764.2-4.4"

The maximum average power absorbed by R is

max

1y 2 1 . .
P = 2| 1R, = $(0.6764)(30) = 6.863 W

» Notice the way that the maximum power is calculated using the Thevenin
Equivalent circuit.



Topic 9: 3-Phase Circuit Analysis

3-Phase Transmission Lins

rrrrrrrrrrrrrrrrrrrrrrrrr

ﬁ Phase 1 Phase 2 Phase 3
o @ & N, 0° % ‘ |
f ! 90° 1803 0°
* 3.Phase Qenerator 3.PhaseLoad

120° 120°
I, V- vm Vﬂh
Y g — e I I
A A * |ph . _Vl R oy
V L A |
ph 1\‘I;rﬂll ph
A
b
! 1 r VL Vph Zl 23
Vie
-——A "
v
Y
Z;
B .

3 - Phase Load Connected in Star

3 - Phase Load Connected in Delta



Three phase Circuits

» An AC generator designed to develop a single sinusoidal voltage for each rotation of the

>

shaft (rotor) is referred to as a single-phase AC generator.

If the number of coils on the rotor is increased in a specified manner, the result is a
Polyphase AC generator, which develops more than one AC phase voltage per rotation of
the rotor

In general, three-phase systems are preferred over single-phase systems for the
transmission of power for many reasons.

1. Thinner conductors can be used to transmit the same kVA at the same voltage,
which reduces the amount of copper required (typically about 25% less).

2. The lighter lines are easier to install, and the supporting structures can be less
massive and farther apart.

3. Three-phase equipment and motors have preferred running and starting
characteristics compared to single-phase systems because of a more even

flow of power to the transducer than can be delivered with a single-phase supply.

4. In general, most larger motors are three phase because they are essentially self-
starting and do not require a special design or additional starting circuitry.



Single-Phase, Two-Phase, Three phase Circuits

DI 5

e
N
Q= ¢
-
Ly

o<
O
N
=~
[ o)

§

v/ + I Z, /b ‘

)
U

Q

(a) (b)

a) Single phase systems two-wire type _ _
b) Single phase systems three-wire type.

g é Allows connection to both 120 V and 240 V.
0@ - k2
o o Two-phase three-wire system.
v, /290° ‘ ) . Z,, The AC sources operate at different phases.



Three-phase Generator

» The three-phase generator has three induction coils placed

120° apart on the stator.
» The three coils have an equal number of turns, the voltage
Induced across each coil will have the same peak value, shape

and frequency.

!
i I
' I
: |
l I
' |
[

| I

-] ZOLT—] 20—
I



Balanced Three-phase Voltages

/0"

a A 7,
@ o
/1200 b B 7,
Three-phase four-wire system ®— o—
V o
b/ +120° . c Zn
@ o— [
n N
A Three-phase Generator - © Neutral Wire

a o

\oltages having 120° phase difference

/‘{m /%n /Vcn

Three-
phase b o
output




Balanced Three phase Voltages

oa
# A"
an Neutral Wire
on

Vo Von
b
O C
a) Wye Connected Source
V,, =V, £0° Ven v
V,, =V, £ -120° \
*\120"
V. =V _/-240°
aP 120°< >
Van

-120°

Ve

a) abc or positive sequence

ob

o C

b) Delta Connected Source
Vin V,, =V, £0°

V'
\ Vyy =V, £ +120°
ul V,, =V, £+ 240°

120° < W -
A/

Ven
b) acb or negative sequence



Balanced Three phase Loads

» A Balanced load has equal impedances on all the phases

a) Wye-connected load b) Delta-connected load

Balanced Impedance Conversion:
Conversion of Delta circuit to Wye or Wye to Delta.

L, =L, =L,=1,

= b=h =4 z2,=32, 7,=:2,




Three phase Connections Y-Y Connection

» Both the three phase source and the three phase load can be

connected Wye Wye.

> Y-Y connection

'n
a el
s
‘un =/ I,,
—
n
&
Vu (£) (3) Vim "wé
C
I/J .
€
3
I b (
e
\,(H! = ""‘pﬁ
\"hr.' = VJ,,/“ 12(). \"( e \I’ /l +120°

VL = \/§V1,




Three phase Connections Y-Y Connection

» Example: Calculate the line currents in the three -wire Y-Y

system shown below. ' 5-j29 y
() 1100° v
110/0° T 4
I, = = 6.81/-21.8° A |

16.155/21.8° 7\ 10 +j8 Q2

noz2100v () () noz120°V |

| / \p 3-i292 g 10+j8Q
I, =1,/—120° = 6.81/—141.8° A 5 — 1.
— e

I, =1,/-240" = 6.81/-261.8° A = 6.81/98.2° A 5-i2Q 10+/8Q



Three phase Connections Y-A Connection

» Both the three phase source and the three phase load can be
connected Wye Wye. Vs Voe 5 _ Ve

> Y-A connection

ll

(
—

o
. l“, — l B l . - l ”‘r| I l "‘/‘,4 2—“) )
, /L A CA g : =7 aaaic I, = \/§1p
\;,vr, ".\f—',,l l,\b" | 5 U ()D = /()S(\(\l l-lb'\ )/,"’ _-\.”‘
| I O
AR '{';..--.\.A
/ S\ Zs

' > , ' Vi ,“ \ [ L — II ¢ l‘ — II /,‘ — ’I(‘

= Zs, NoxiTei
5o po Zs \
] ¢
I TN’ 1/) - ‘IAB’ - lIb'(."| - ‘I(f'AI

b BC
“'IH
‘vv/"u ~ "’H 7= '“‘ 2
]
z Zy
- A = —
: ; vun D T ZY 3
\"“.',' - \ 3\,‘.,“.“‘3() = \‘\h‘* \‘:,‘,: — \.;\,, ()() - \'/;(' |



Three phase Connections Y-A Connection

» Example: A balanced abc-sequence Y-connected source
with V,, = 100210~ V is connected to a A-connected balanced
load (8 + j4) Q per phase. Calculate the phase and line currents.

The load impedance is  Za = 8 + j4 = 8.944/26.57° ()
If the phase voltage V,, = 1004100, then the line voltage Is

Nir = Vi \/3{3(')" = 100V3 / 10° + 30° = Vup Vg = 173.2/40°V

The phase currents are The line currents are
g 173.2 /40° I, = LipV3/-30° = V3(19.36)/13.43° — 30°
Lip = o = ,A—_—_ = 19.36/13.43° A - e L =
Zy  8.944/26.57° = 33.53/-16.57° A
Ipc = Lug/—120° = 19.36/—106.57° A =i TL =y T
Iea = Lus/+120° = 19.36/133.43° A N b aap O A
Alternatively, usin V., 100 /10° )
4 A = 33.54/-16.57° A

single-phase analysis, *  Z./3  2.981/26.57°



THREE PHASE CIRCUITS

n V., = 120 [=240°
C_) V rms

L * 1

Balanced Phase Currents
I,(t)=1,cos(owt—-0)

a A .
?':I.rm ﬂ-r]-’l Hf'"
C V. =120[0° V rms . ’-V‘.-\‘ -

+
b N

N =120/2 / v

m v, = 120 [=120° m < ~_~_
(+> V rms > c

Instantaneous Phase Voltages
Vo (1) =V, COS(@)(V)

Vp, (1) =V, cos(wt —120°)(V )
V(1) =V, cos(wt —240°)(V)

i, (t) =1, cos(wt—6-120°) Instantaneous power
i (t)=1,cos(wt -0 —240°) P(t) = Van (1), (1) + vy ()i (1) + Ve, (Vi (1)
Theorem

For a balanced three phase circuit the instantaneous power is constant

p(t) = 3Vm2|m cosd W



Proof of Theorem
For a balanced three phase circuit the instantaneous power is constant

V| c0s(120) =-0.5
p(t) =3%0039(W) Lemma

cos¢ + cos(¢ —120) + cos(p +120) =0
Proof
_ COS¢ =C0S¢
cos(¢ —120) = cos¢@cos(120) + sin ¢sin(120)
cos(¢ +120) = cos¢@cos(120) —sin ¢sin(120)

Instantaneous power

P(t) = Van (1)15 (1) + Vi (1)1 (€) + Ver (1)1 (F)

[ coswtcos(wt —0)

p(t) =V, 1| +cos(wt—-120)cos(wt—-120-8)

| +c0os(wt —240)cos(wt —240-0) |

cos¢ + cos(¢ —120) + cos(¢p +120) =0

COS COS f3 = % cos(a — B) +cos(a + )]

[ 3c0s8 +cos(2wt—0) |
p(t) =V 1| +cos(2wt—240 —-0)

| +C0S(2wt — 480 - 0) |
p=wt-06

cos(¢ — 240) = cos(¢ +120)
cos(¢ —480) = cos(¢ —120)




SOURCE/LOAD CONNECTIONS

BALANCED Y-Y CONNECTION Line voltages
V..
@ f_.].'."_z.r Van =|Vp | £0°
v, Vab zbn il://p |j1_2](£0 Vab =Van —Von
N o - cn_—_| p | IV, | £0°= |V, | £ ~120°
ca N Positive sequence -V, | (1~ (cos120 - jsin120))
v V,, . phasewyoltages

e 1 o T Tk s A
£

=1, | £6%1, =1, | £0-120°1_ <1, | £6+120°

1 .3
V| -V [|==iX2
IIpIpI(ZJZJ

= V3|V, | £30°

Vie =3[V, | £-90°
Ve, =3[V, | £-210°
V| =+/3|V, | =Line Voltage

I, +1,+1,=1 =0 Forthisbalanced circuit it is enough to analyze one phase



Example: For an abc sequence, balanced Y-Y three phase circuit V_, =208/ —30°

l‘..rl'.'.'l
I
O-+te
v hn
|
@Eid
l‘.‘rl:”
|
@ —s Lyl—oe
[.li'
Balanced Y - Y

V,, =120/ —60°
V,, =120/ -180°
V,, =120/60°

Determine the phase voltages.

V.

“n

‘[“rh”
Voo =V, | £0°
Vi =V, | £-120°

The phasor diagram could be rotated by any angle

A

1 ! [
?'““ t i i

’-ﬁwlﬁ“ -
/N "/
w fh

Positive sequence a-b-c

Vi Vo =~/3 |V, | £30°
V,, lagsV, by 30°

Vg =V, | £120°

Positive sequence
phase voltages

V,, =208/ —30°
N |Vap | o ano
¥, Van :%4(—30 —~30°)

Relationship between phase and line voltages



Example: For an abc sequence, balanced Y - Y three phase circuit
source |Vphase |: 120(\/)rms1 ZIine =1+ le’ thase =20+ leQ

Determine line currents and load voltages.

1€} -
ot S —0 4 V.. 120.£0°

lan = A 5
21+ j11 23.71/27.65
=5.06£-27.65°(A)rms

Because circuit is balanced data on
any one phase are sufficient

vam <+> \r i
120.20° T

Chosen
as reference

Ef”?’ € |5 =5.06--120-27.65°(A)rms
| . =5.06120—27.65°(A)rms

N

no O

N
V,, =120/0° Van = laa x (20 + j10) = 1, x 22.36 £26.57
V,, =120 £ -120° Van =113.152-1.08°(V )rms
Van =120.£120° Vgy =113.15/-121.08°(V )rms

Abc sequence Ve =113.15.2118.92°(V )rms



Example: For an abc sequence, balanced Y - Y three phase circuit

V,, =120 £90°(V )rms. Find the line voltages

V,, leads V,, by 30°

V,, =~/3x1202120°(V)rms

= J3x120.20°(V )rms A
v3x V) | V=3IV, | £30°

= /3x120.£240°(V )rms ,
“ V,, lagsV,, by 30°

\

a

, =208 £0°(V)rms. Find the phase voltages Relationship between

phase and line voltages

V,, lags V,, by 30°

208
V,, = Z—=150°(V)rms

van_¥4 30°(Vyrms " 3

3 v _ 208

=—— /90° rms
on =3 \'D)



Example: For an abc sequence, balanced Y - Y three phase circuit
load, |V jase [F104.02.226.6°(V ) s+ Ziine =1+ J1Q, Z =8+ J3Q2

phase

Determine source phase voltages
2o du 1 0 10 p
O —M—uan—0 . .
Currents are not reqmred. Use inverse

/ ESQ voltage divider
V. - B8+ )3)+ 1+ jl)V

an

Vem <+> \;.1_‘-. :104021_2660(\/)rms 8+ j3
9+ j4 8-)3 84+ j5
X =
8+j3 8-j3 73
V,, =120.£30°
V,, =120/ —90°
V, =120/150°

AN

=1.15/3.41°

no

Positive sequence a-b-c




DELTA-CONNECTED LOAD

v, 2,2, 126,
NI
i U 1 F+I - E.j,
o 0, =30°-0,
v. Vi Ly
e
- + - =
_/
Method 1: Solve directly
Van =|Vp | ZOO Vab _ \/§ |Vp |4300
Voo AV, 14120y |2 oo
Vcn =|Vp | 4120 Vca :\/§ |Vp |Z—2100
Positive sequence
phase voltages [ Vine I=~/31 1, |
eline =0, —30°

Line-phase current
relationship

Load phase currents

V
|AB:$:“A|4QA
vV . Line currents
|BCZZLC=||A|49A_1ZOO la=1a5—lca
A
IbBZIBC_IAB
Z, ICCZICA_IBC

Method 2: We can also convert the delta
connected load into a'Y connected one.
The same formulas derived for resistive
circuits are applicable to impedances

Z
Balanced case Z, :?A
V |1 |:|VAB|/\/§
=g Al 2002172, 173
! L QL:_QZ




REVIEW OF

AeY Ry =R, || (Ry +Ry) A-Y
Transformations ) > ’
Ry,=R,+R,
: Y‘A éRa /
Rc Rb
b ¢ b
R, = RaRo + RoR: + RR,
Rb
R, = RaRo * RiR. +RR,
_ R3R1 R3= RaRb_i'RbF\)c"'RcRa
A->Y Y —A

Ry



'L i'ri aorA
{ I;/8
V, /b
V, =V3V, [b+30° = n IV, |=+/3 IV ohase |
N 0, = ‘9phase +30°
bor B corC A2 Line - phase voltage
(b) relationship
(a)
L =1 /0 | ine |_*@| N Line-phase current
[ =1L

aor A B)ine =6, —30°  relationship

Example:
I, =12240°.

Find the phase currents

(b) l.n =6.932190°

V, =V, jb+30°

cor(C




Example: Delta-connected load consists of 10-Ohm resistance in series with 20-mH

inductance. Source is Y-connected, abc sequence, 120-V rms, 60Hz. Determine all line and
phase currents

V..
/‘;\ a 1,4
~—/ to Lig : V,, =120 £30°(V )rms
Y N Zy - Zinductance =27rx60x0.020 =7.54Q)

b I-').‘ .
n F@_F_._*. B0z  z,=10+(754Q0=1252/37.02° =7, =4.17./37.02°
T v e

__ AB _Vag =120@460 =16.60.£22.98°( A)rms
V., Vi Z, 10+j7.54
9 MIRAT

e . lgc =16.60£—-97.02°(A)rms
| oA =16.602142.98°(A)rms

|VA = \/é |Vphase |

Or = O phase +30° |, =28.75£-7.02°(A)rms

“rl‘e f phahsje voltage s = 28.75/ ~127.02°( A)rms

relationship | = 28.75./112.98°(A)rms

| IIine |:\/§| IA |

Bjine = 05 —30° Alternatively, determine first the line currents

Line-phase current and then the delta currents
relationship



POWER RELATIONSHIPS

=0 aorA N \/§|Vphase | Viine
~ 1,16 _
o { . O =0 ppase +30°
" Line - phase voltage
Vi=V3V, [6+30° = 4 relationship
0 .
IIine
bor B corc STotaI = 3><Vphase x| phase
* Impedance angle
S’Total = \/gvlinelline 9 <
(a) Power factor angle
I =1,08 zor A | Hiine [F \/§| N
\i X Oline =0, —30° Potal = V3Miine Il iine | €088
o= 4 30° - .
Vv V,=/d+30 Lme?phasg current Qiotal = /3 Miine Il Liine | SIN 05
— VAURTE: relationship
- V3 M : _ *
¥ cor S =3V,,..xI
hor B L] total line A

*

STotal = Igvline I line




EXAMPLE: Determine the magnitude of the line currents and the value of
load impedance per phase in the delta

. aorA |Vjine |= 208(V )rms
| \+/ ' Pyotar = 1200W
line : power factor angle = 20° lagging
S or B corC
| IIine |:\/§| |A|
0. =0, —30°
Pootal = v/3Miine Il iine | €065 ¥ fine h A
_ ine-phase current
Qtotal = ﬁwline ” IIine |Sm gf relationship
I:)total _ |Vline ” IIine |
3 3 COSOr . |=3.54(A)rms
|Vline|

|1, [=2.05(A)rms —1ZalF 0 =101.46Q

A



Example: For an abc sequence, balanced Y - Y three phase circuit
source |V jpaee [F1200V ) sy Zjine =1+ J1Q, Z a6 =20+ J10Q
Determine real and reactive power per phase at the load and total real, reactive and

complex power at the source

I, 10 10 | Van = laa x(20+ j10) = 1, x 22.36 £26.57°

V,n =113.152-1.08°(V)rms
/ gz{m S phase =Van lan =113.15.2-1.08°x5.06.£27.65°
v S phase =572.54226.57° =512+ j256.09(VA)rms
120./0° \ E””ﬂ Seource phase = Van X 1aa =120.£0°x5.06.£27.65°
Reference Ssource phase — 607.2.27.65°
" ON =537.86 + j281.78VA
V,, =120 £0°
V,, =120/ -120° Because circuit is balanced Protal source =3%537.86(W)
V, =120 /120° data on any one phase are Qtotal source = 3% 281.78(VA)
sufficient S _
AbC sequence total source — I total source T Qtotal source
: —1613.6 + j845.2(VA)
V,, 120.£0°
| Stotal source [=1821.6(VA)

IaA = - = o
21+ j11 23.71/27.65
=5.06/—-27.65°(A)rms



Example: Determine the line currents and the combined power factor

aor A

Circuit is balanced
Load 1:24kW at pf = 0.6 lagging
Load 2:10kW at pf =1

corc  Load3:12kVA at pf =0.8 leading
[mA inductive

S=P+jQ

P = S|cosd; /S/LQ
P, = 24kwW | }:>| S, |= 40KVA Q= S|sin6; 3
pf =0.6lagging of —cos6, [{c.'
|QuI= IS, P —| PP =32kvA S =51+ 5, + 54 -0
lagging = inductive .. S; =24 + j32kVA capacitive
Load i ) Sioral=S,+ S, + S, =43.6+ j24.8KVA = 50.160 £29.63°KVA
P, =10kW _
pf =1 }: 5o =10+ JOKVA Py = ﬁlv“”‘* [ 1iine [ COSOs — | Stotal |5 V3 [Viine [X] Nine |
Load 3 Quotal =v3Niine [l Liine |5in 65 0y =29.63°
| S, |=12kVA P, = 9.6kW pf =0.869 lagging
pf =0.8 |Q, |= 7.2kVA | 11 [2139.23(A)rms

leading pf = capacitive .. S; =9.6 — j7.2kVA Continued ...



If the line impedances are Z,;,, =0.05+ j0.02Q

EXAMPLE

continued .... determine line voltages and power factor at the source

. aor A
| 1ine [F139.23(A)rms
y SIine:3><(Zlinelline)ll*ine:"?’leine' Ljine |2
— cor C
53,264

Sioadior = 43.6+ j24.8KVA = 50.160./29.63°KVA Vine = 73, 130.13 ~ 22087(V)rms

Seource total = 46.508 + j25.963 = 53.264 £ 29.17°kVA
pf =coséd; =c0s(29.17°) =0.873lagging
| Stotal |:\E|Vline 1] Djine |
0, =29.17°



Example: AY -Y balanced three-phase circuit has a |

ine voltage of 208-Vrms. The total real

power absorbed by the load is 12kW at pf=0.8 lagging. Determine the per-phase impedance

of the load
I, =1,/0
- aorA
o
Vi=V3V, [d+30° - H
“borB e or C
208 (a)
jlvphase |: ﬁ = 120(\/ ) rms
Vphase ) |Vphase |2
Stotal = thase X . _3x i
phase ohase

pf =0.8=cos@; = 0; =36.87°
P

total

| Stotal |: pf =15kVA

|VA |: \/é |Vphase |

HA = ephase + 300
Line - phase voltage
relationship
STotal = 3><Vphase X It)hase
S=P+jQ
P =[S |cosé;
Q= S|sing;
pf =cosd;
3x [V 2
Z prasl= 2L 2880
| total
Z panse = 2.88236.87°Q2



Example: A 480-V rms line feeds two balanced 3-phase loads. The loads are rated
Load 1: 5kVA at 0.8 pf lagging Load 2: 10kVA at 0.9 pf lagging.

Determine the magnitude of the line current from the 408-V rms source

|Sl|=5kVA=%:>P1=4kW S—P+j0
' P =| S|cosé&;
=/ S, I —P? =3.0kVA
QL \/l_ll _ Q= S|sina,
pf lagging = S; =4+ J3kVA of = coso,
| 82 |= 10kVA = ()—Pg — P =9kW Stotal = Sl_" S2

I:)total = \/?Tlvline ” IIine | COSQf
Qtotal — ﬁNIine ” IIine |Sin 91:
| Stotal |:\/§|V|ine || I|ine|

Q, =+/|S, ? —P2 = 4.36kVA
S, =9+ j4.36KVA
S, . =13+ j7.36KVA

| l.. |: | Sto'[al | _ 14,939
ned ™ 3|V, | 706.68

total

=21.14(A)rms



POWER FACTOR CORRECTION

Balanced Similar to single phase case.
“ﬁlﬂ:‘ﬁe b S ' Balanced Use capacitors to increase the
source | load power factor
> — Low pf Keep clear about
| lagging | total/phase power,
Cm ¢ C/p line/phase voltages
Neutral
AQ =Qpe —Q — 2
Sold —>Q e ol QC‘nhase - (DCVnh
of old Reactive Power to be added
o
P, S=P+])Q pf =cosé; =sin@; =+/1— pf°
P e Qnew P =| S |cosé;
p new

Q-S|sing,  tang, =P Q=Ptand,

ot

lagging = Q >0

Qper capacitor — — Cv*
The voltage depends on how
the capacitors are connected

pf =cosé;



EXAMPLE:

- , _— =60 Hz, V,;,.=34.5 kV, .
1 IﬁgLangﬂe b N I VN Required pf=0.94 lagging.
source 0.78 power
C S _ factor lagging
Cm _[ ( j_
Neutral T T
P, =18.72MW
_ o _ } = Qpeyy = —9.067 MVA
S=P+]jQ pf,., =0.90 lagging
(F; =: 2 :C_Osgf Q= Ptang, AQ =9.067 —15.02 = -5.953MVA
= S|sin
£~ cosd ' tan@, — pf Qper capacitor — —1.984MVA
o =cost ot 345

lagging = Q4 >0
pf =cos@; =sin@; =./1— pf* =0.626

|Q,14 |=15.02MVA

Y —connection :>Vcapacitor — f KV rms
= 2
Qthase - (“OCVvh 2
3
_1984X106 = —272- x 60x C x 345)(10
V3

C =13.26uF
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