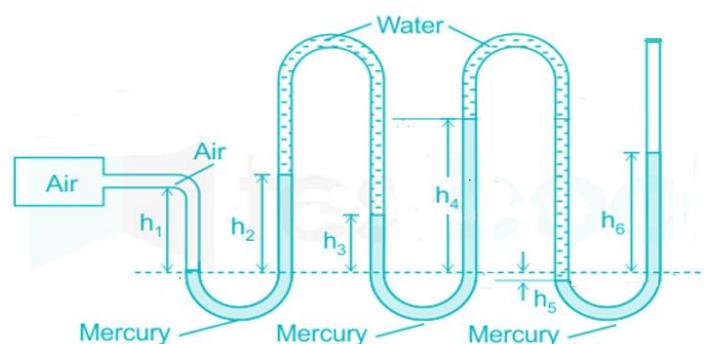


Dear students of Fluid Mechanics 0905241


Your homework consists of the problems below. Due date for this homework is on Tuesday May 06th 2025 by 5:00 PM on the link that will be shared with you on Moodle.

Good luck for all of you.

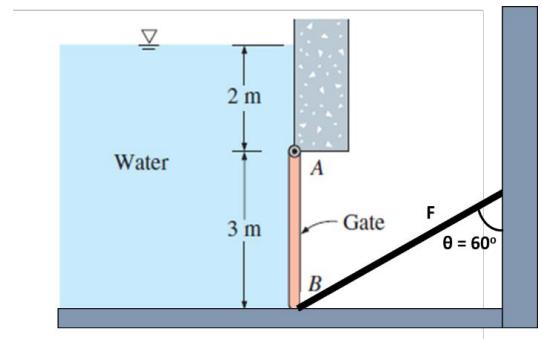
Dr. Abdullah Nasr

Q1: The below figure shows a multi-tube manometer using water and mercury that is used to measure the pressure of air in a vessel. It is given that $h_1 = 0.3$ m, $h_2 = 0.4$ m, $h_3 = 0.3$ m, $h_4 = 0.6$ m. $h_5 = 0.05$ m and $h_6 = 0.5$ m. Given that the specific gravity of mercury is 13.6, and the density of Air is 1.2 kg/m^3 for the given values of heights, Calculate the absolute pressure for Air in the tank. [take atmospheric pressure to be 99500 Pa]

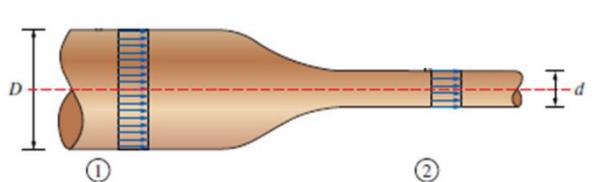
P =

Q2: Balloons are often filled with Helium gas because its specific gravity is 0.15. If the balloon has a diameter of 13 m and carries two people, 70 kg each, determine the acceleration of the balloon when it is first released.

[Hint: Take the density of air to be 1.16 kg/m^3 . You can also assume that the balloon is a perfect sphere and that the weight of the balloon's skin, ropes, and the cage are negligible. Volume of a sphere = $4\pi R^3/3$, where R is the radius]


Acceleration =

Q3: A 3-m-high, 6-m-wide rectangular gate is hinged at the top edge at point (A) and is restrained at point (B) by a rod that makes 60° with a nearby wall as shown in the figure.


Determine the force (F) in the rod

$$F =$$

Q4: Water at 40°C (density is assumed to be 996 kg/m^3) flow steadily through the pipe shown in the figure. If $D = 4d$, determine the average water velocity in section 2 of the pipe given that the average water velocity in section 1 is 10 m/s .

$$V =$$

Q1:

Solution: (given)

$$h_1 = 3m, h_2 = 4m, h_3 = 3m, h_4 = 6m, h_5 = 0.5m, h_6 = 5m$$

$$\delta G_H = 13.6, \rho_{air} = 1.2 \text{ kg/m}^3, \rho_{water} = 1000 \text{ kg/m}^3, P_{atm} = 99500 \text{ Pa}$$

$$P_{atm} + \rho g (h_6 + h_5) - \rho_w g (h_4 + h_5) + \rho g (h_4 - h_3) - \rho_w g (h_2 - h_3) + \rho g (h_2) - P_{air} g (h_1) = P_{air}$$

$$99500 + (13.6 \times 10^3) \times 9.81 \times (0.55) - (1000) (9.81) (6.5) + (13.6 \times 10^3) (3) (9.81) - (1000 \times 9.81) \times 1 + (13600 \times 9.81 \times 4) - (1.2 \times 9.81 \times 3) = P_{air}$$

$$P_{air} = 258.9 \text{ kPa}$$

Q2:

Solution: (given)

2 people

$$\delta G_{\text{of helium}} = 0.15, \text{ diameter} = 13m, (70 \times 2) \text{ kg}, P_{air} = 1.16 \text{ kg/m}^3$$

$$V = \frac{4\pi R^3}{3}, R \rightarrow \text{Radius. } (w \approx 0)$$

$$\rho_{\text{helium}} = 0.15 \times 1.16 = 0.174 \text{ kg/m}^3$$

$$m_{\text{total}} = 140 + (0.174 \times \frac{4\pi}{3} (6.5)^3) = 340.16 \text{ kg}$$

$$\sum F = ma$$

$$F_B - F_w = ma$$

$$P_{air} g V - mg = ma$$

$$1.16 \times 9.81 \times 1150.3 - 340.16 \times 9.81 = 340.16 \times 9$$

$$a = 28.67 \text{ m/s}^2$$

Q8:

Solution:

$$F_c = \rho g (h_c) A$$

$$= 1000 \times 9.81 \times \left(2 + \frac{3}{2}\right) \times (3 \times 6)$$

$$= 618 \text{ kN}$$

$$y_p = y_c + \frac{I_{xxc}}{y_c A}$$

$$= 3.5 + \frac{\alpha b^3 z^2}{3.5 \alpha b \times 12}$$

$$= 3.5 + \frac{(3)^2}{3.5 \times 12} = 3.71 \text{ m}$$

$$P_c = \rho g h$$

$$= 1000 \times 9.81 \times 3.5$$

$$= 34335$$

$$\sum F = 0$$

$$\tau_1 - \tau_2 = 0 \sim \tau_1 = \tau_2 \sim F_c (y_c - 2) = F r \sin 60$$

$$618 \text{ kN} (1.71) = F (3) \sin 60$$

$$F = 406.75 \text{ kN}$$

Q4:

Solution:

$$m_1 = m_2$$

$$\cancel{\rho_1} V_1 A_1 = \cancel{\rho_2} V_2 A_2$$

$$10 \times \left(\pi \frac{16^2}{4} \right) = V_2 \left(\pi \frac{d^2}{4} \right)$$

$$160 \text{ m } 15 = V_2$$